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ABSTRACT

The problem discussed in this dissertation is the development of an efficient
method for visual navigation of autonomous vehicles. The approach is to signifi-
cantly reduce the expensive computational time of landmark detection by straight-
edge features. A novel, fast straight-edge-detection method for use in autonomous
vehicle navigation and other image-understanding applications is presented. Straight
edges in >gray-scale images are detected using a new direction-controlled edge tracking
method, which gives precise estimate of the endpoints. To significantly reduce the
number of exhaustive pixel computations, a random-hitting method using a pseudo-
random number generator is proposed. Ounly if a generated pixel is significant do
we start tracking the edge containing that pixel. To overcome the “noisy” gradient
direction information, a robust least-squares linear fitting method is used to control
the tracking process.

The results of the algorithm show how it is efficient for landmark detection,
which is important for motion control of autonomous vehicles. Thus the new method
is implemented as a component of the image-understanding system in the autonomous
mobile robot Yamabico-11 at the Naval Postgraduate School.

An efficient world-modeling method based on the 2D model of the environment
of the vehicle, including the heights of vertical edges in the environment, is presented.
This modeling method is implemented with the new edge-detection method to im-
prove the efficiency of the pose-determination algorithm (pose is a combination of
the position and orientation of the camera), which is an essential task in the area of

autonomous vehicle navigation.






II.

I11.

TABLE OF CONTENTS

INTRODUCTION . . . . ... ... . . .. . .. 1

A. BACKGROUND . ... ... ... .. ... .. ... ... ... 1

B. IMAGE UNDERSTANDING .. ................. 2

1. Feature Extraction .. . . .. ... ... .......... 3

2. Segmentation . .. .. .. ............ PO 4

3. Classification and Interpretation . . . ... ... ... .. 5

C. AUTONOMOUS VEHICLES AND VISION . ... ... .. .. 5

1. Vision-Guided Navigation . ................ 6

D. PROBLEM STATEMENTS . . ... ... ... ... ...... 8

1. Problem Definition . . ... ... ............. | 8

2. Assumptions . . . . ... ... L L L. e 9

E. PREVIOUSWORK . ... ... ... . ... .. ....... 9

1. Edge Detection . . . ... ................. 9

2. Pose Determination . . . . . ... .. ... ........ 11

F. ORGANIZATION OF DISSERTATION . ............ 12
PRINCIPLE OF STRAIGHT-EDGE DETECTION USING GRA-

DIENTS . ..ottt .13

A. IMAGE REPRESENTATION . . .. .. ... .......... 13

B. EDGE DETECTION PROBLEM ............ S 15

C. GRADIENT DIRECTIONS AND GRADIENT REGIONS . .. 16

1. Gradient Computation . . .. .. ... .. ........ 16

2. Gradient Regions . . ... ... ... ... .. ...... 18

D. FINDING EDGE FEATURES BY LEAST-SQUAR‘ES FITTING 21

E. SUMMARY . .. .. 24

STRAIGHT-EDGE-FINDING METHOD BY SCANNING .. 27

A.

IMAGE SCANNING . . ... ... ... .. ... ... .... 27

vil



CONNECTIVITY TEST . . . .. .................. 28

B.
C. DATASTRUCTURES . ... .. .. ... .. ... .. ... .. 31
1. Rowof Pixels . .. ......... . ... DU 31
2. Gradient Regions . . . ... ... ... ... . . . . . .. 32
3.~ Line Ségment ........................ 33
D. ALGORITHM. . . . ... ... . 34
1. Computing Gradient Magnitude . . . . .. ... .. ... 35
2. Connectivity Test Function . . . . ... . ... .. ... . 36
3. Least-Squares Fitting . . . .. .. ... .. ... ... . 36
4. Computing Endpoints of Segments . . .. ... ... .. 38
E. EXPERIMENTAL RESULTS . . . ... ........... .. 38
DIRECTION-CONTROLLED EDGE TRACKING METHOD 41
A. PRINCIPLE . . . .. ... .. ... . . . . . ..., 41
L Edge Tracking Algorithm . . . . . ... .. ... .. .. . 42
B. TRACKING CONTROL BY EDGE DIRECTION . . . .. ... 43
1. Tracking Direction Evaluation . . ... ... ... .. . . 44
2. One-Way Pixel Sequence Tracking Algorithm . . . . . . . 45
C. SELECTING NEXTPIXEL . v . .. ... ... ... ..... . 45
L. Quantization of Edge Direction . ... ....... ... 45
2 Next Pixel Selection. . .. .. ... [ 46
D. COMPUTING SEGMENT PARAMETERS . . ......... 48
A GLOBAL ALGORITHM FOR EDGE DETECTION USING
IqLIQLI\i]E)(:)I\/[ HITTING . . . .. ... ... e e 51
A. RANDOMHITTING . . . .. .. ... .. ... . ... ... .. 52
1. Concept of Random Hitting . . ... ... ....... . 52
2. Edge Hitting Probability . . . .. ... ... ... .. . . 53
B. CLOSENESS TEST . .. ... ... .. .. ... . ... ... . 57
C.

RESULTS . . ... .. 60

viii



VL. WORLD MODEL . ............ B 69
A. BACKGROUND .......................... 69
B 2D POLYGONALWORLD . .. ................. 70
1. Polygons . . . ... .. .. ... 70
a. General Definitions . . . ... ... ........ 70
b. Data Structures . . . ... ... .. .. ...... 71
2. World . ... ... ... 72
a. World Data Structures . . ... .......... 73
b. Yamabico’s 2D World . . . . . ... .. ... ... 73
C EXTENDING 2D MODELTO3D ... ............. 74
D.  2IDMODEL ..................uiii... 76
E ‘TRANSFORMING MODEL INTO 2D VIEW . . .. ... ... 78
F MODELING RESULTS . .. ... .. e e e e e e e 8l
VIL. APPLICATION OF EDGE TRACKING AND MODELING: VISION-
BASED POSE DETERMINATION ................. 85
A. INTRODUCTION . ... ... .. .. .. ... . . . . ..., 85
B. PROBLEM STATEMENT . . .. .. .. ... ... ........ 86
C. OVERVIEW . . . . . .. . o e, 86
1. Sugihara’s Formulation and Solution of Point Location
Problem (PLP) . . . ... ... ... ........... 86
2. Camera Pose Determinationas PLP ... . . ... ... .. 87
D ALGORITHM . . . . . ... o o . 87
1. Finding Correct Position . . ... ............. 90
2. Finding Correct Orienfation ................ 94
E. EXPERIMENTAL RESULTS ................... 94
VIII. IMPLEMENTATION PLATFORM: YAMABICO-11 . . . . . . 97
A YAMABICO HARDWARE SYSTEM . . . . ... .. ...... 97

X



B. ON-BOARD VISION SYSTEM . ... ... ... .. ... 98

1. IMS Image Board . . e e e e e e e e 99

2. CCD Camera . . .............. ... . . . 100

C MMLSOFTWARE . .. ............. .. .. . 100

D IMAGE UNDERSTANDING SOFTWARE . . . . .. ... 101

1. Basic User-Level Image Functions . . . .. ... ... . 102

IX. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK 103
A. CONCLUSIONS . .. ......... . e 103

B. FUTUREWORK . . . .......... ... ... .. .. 104
APPENDIX A. ON-BOARD IMPLEMENTATION . . .... . . 105
APPENDIX B. WORLD MODEL .. ......... .. .. .. 131
LIST OF REFERENCES . .. ... ........ . ... .. ... 137
INITIAL DiSTRIBUTION L 145



IL
ITL.
IV.

VL
VIIL
VIII

LIST OF TABLES

Approximation of detection probabilities for different n hits. . . . . . .
Data of line segments obtained by the tracking algorithm. . .. .. ..
Number of line segments from several images. . . ... ... ... ...
Number of vertical line segments from a sequence of three images. . . .
Yamabico’ s main hardware specifications. . . . ... .. ........
Mapping of image modqles to the VME bus address space. . . . . . ..
Summary of Cohu CCD camera capabilities. . . . .. .. .. ... ...

Summary of basic user image functions. . . . ... ... .. ......

xi

56






e ST B o S O

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.

LIST OF FIGURES

An image-understanding system. . . . . . . .. ..t
An indoor environment image. . . . . ... ... ... L. L.
A gray-scaleimage. . . . . . ... ...
Matrix representation of image plane. . . . . . . ... ... ... ....
A simple 6 x 6 gray-scaleimage.. . . . . .. .. ... ... .. .....
Gray-level values of the 6 x 6 image. . . . . .. ... ... .......

A 16 x 16 window on an image of a polygonal object. . . . . .. .. ..

Gray-level values of the window pixels in the polygonal object image

from Figure 7. . . . . . . .. ...
Gradient operators. . . . . . . .. .. ...
Indices of 3 x 3 pixel set centered at pixel p = (z,y). . . ........
Gradient components as vectors. . . .. .. .. ... ... ... .. ..
A gradientimage. . . . . . ... L.
Gradient and edge directions. . . .. .. .. ... ... ... ... ...
Four distinct gradient regions in the gradient image.. . . . . . . . . ..

Set of pixels and their fitted line. . . . . .. .. ... ... ......

General case of connectivity test. . . .. .. ... ... ... ......
Special cases of connectivity test. . . .. .. .. ... ... ... ....
A pixel is included in the region as one of its neighbors if it satisfies the
connectivity test. . . . . .. ... L L
Current pixel starts a new region if it cannot belong to a region as one

of its neighbors. . . . . . . ...

X111

30



24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

49.

An image pixel data structure. . . . . ... ... L L L. L. 31

Current or previous row pixel data structure. . ... .. ... ... .. 32
List structure of gradient regions. . . . . . ... ... ... ... ... .32
Gradient region data structure. . . . . ... ... ... ... 33
Line segment data structure. . . . . . .. .. ... ... L. 34
The main algorithm for edge detection by scanning. . . . .. .. .. .. 35
Computing gradient magnitude with Sobel operator. . . ... ... .. 36
General connectivity test algorithm.. . . . ... ... ... .. .. ... 37
Least-squares fitting of aregion. . . . . . . . ... ... L. 37
Endpoints computation algorithm. . .. .. ... ... ... .. ... .. 38
Input imageof aprinter. . . . . . .. ... 39
Line segments extracted from a printer image. . . . . .. .. .. .. .. 39
Input image of a hallway portion. . . . . ... ... ... ... ..... 40
Line segments detected form the hallway portion image. . . .. .. .. 40
Edge tracking in two opposite directions. . . . . . ... ... ... ... 41
Edge pixel sequence with its fitted line segment. . . . . . ... ... .. 42
Line segmént detection by tracking. . . . . . ... ... L. 43
Edge tracking and segmerit detection algorithm. . . . . . .. .. .. .. 43
Finding tracking direction. . . . . . . .. .. ... ... L. L. 44
Tracking one side of the pixel sequence. . . . . . ... ... ... .... 46
Next pixel set for eachrange D;. . . . . . . . . ... .. ... ..... 47
Findingnext pixel. . . . .. .. ... .. ... ... ... .. ... 48
Consi.stency test. . . L L 48
Global algorithm for fast straight edge detection. . . ... ... .. .. 51

Distribution of first 10 hits using pseudo-random number generator
with ¢ = 283 x 646 + 181 = 182,999, . . . . . . .. 54
Distribution of 3000 pixels using pseudo-random number generation

with ¢ =283 x 646 + 181 =182,999. . . ... ... ... ... ..... 39

xXiv



50.
51.
52.
53,
54.
55.
56.
57,
58,
59,
60.
61.
62.
63.
64.
65.
6.
67.
63.
69.
70.
71
72.
73,
74,
75,
76.
77,

An Image with total of M pixels having an m-pixelsregion. . .. ... 56

An Image with total of M pixels having different regions. . . . . . . . . 57
Finding distance from point toline. . . . . . .. ... ... ... ... .. 58
Pixel position in the L-coordinates . . . .. .. ... ... ....... 59
Algorithm for closeness test. . . . . ... ... ... ... ........ 60
A square object test image. . . . . . ... ... ... ... 60
Processed pixels before detecting all four line segments. . . . . . .. .. 61
All four segments are detected after 608 hits. . . . . . . ... ... ... 61
Five line segments detected by 77 hits. . . . .. .. ... ... ... .. 62
Ten line segments detected by 345 hits. . . . . . .. ... ... ... .. 62
Fifteen line segments detected by 985 hits. . . . . . . .. .. .. .. .. 63
Twenty line segments detected by 2960 hits. . . . . ... ... ... .. 63
Number of random hits H; to obtain first i segments. . . .. .. .. .. 65
Thirteen vertical edges detected by 2810 hits. . . . .. ... ... ... 66
Twelve vertical edges detected by 2857 hits. . . . . ... .. ... ... 67
Fifteen vertical edges detected by 2553 hits. . . . . ... .. ... ... 67
Examples of polygons. . . . ... .. T 70
Apolygon.. . . . . . .. 71
CWand CCW Polygon. . . ... .. ... .. .. ... ... .... 72
Data structure of a vertexin a polygon. . . .. ... .. .. .. .. .. 72
Data structure of a 4-vertex polygon. . . . . .. .. ... ........ 72
A simple polygonal world. . . .. .. ... ... ... .. .. ...... 73
Representation of 2D world data structure. . . . . .. .. ... ... .. 74
World coordinates and orientation of 2nd floor model. . . . . . . . . .. 75
2D representation of the hallway. . . ... ... ... ... ... ... 75
Asimple3D world. . . ... ... ... ... ... . 76
Representation of a door frame in the hallway model. . . . . . . . . .. 7
A simple 2%D world. . . ... L 78

XV



8.
79.
80.
81.
82.

83.

84.
85.

86.
87.

88.
89.
90.

91.
92.
93.

94.
95.
96.
97.
98.
99.

Data structure of a vertex in a polygon within the 21D model. . . . . . © 79

Example of point visibility. . . . . . .. ... ... L 80
Truncated perspective viewing volume. . . . . . . .. .. .. ... ... 81
Steps of 3D world coordinates to 2D view projection. . . . . .. .. .. 81

Hallway view from z=2032 cm, y=124.25 cm, 6 = 0°, view angle=64°
and focal length=3.0cm.. . . . .. ... ... .. ... ... .. .... 82
Vertical edges of the hallway using 2%D model from the same view point
a,sinthepreviousﬁgure........................T.. 83
Hallway view of the 3D model from z=3000 cm, y =124.25 cm, § = 0°. 83
Vertical edges of the hallway using 22D model from the same view point
as in the previous figure. . . . . .. ... oL 84
Pose determination problem . . . . . ... ... ... .. ... ..... 86

The intersection of two circles passing through three control features

uniquely determines the camera position. . . . . . .. .. ... ... .. 88
Overview of a fast pose determination algorithm. . . .. .. .. .. .. 88
Vertical edges of model expectation 2D view.. . . .. .. .. ... ... 89

Viewing angles from the camera position v to three positions on image

plane lying on the three vertical image lines. . . . . . .. ... ... .. 90
Viewing angles from v to three control features in the world. . . . . . . 91
Finding precise position of the camera. . . . .. ... ... ... .... 91

Geometrical relation between the correct position v and the two circles

passing through the three control features. . . . . .. .. .. ... ... 92
Geometry of finding camera orientation. . . ... .. .. .. ...... 94
Algorithm of computing the correct camera orientation 8. . . . . . . . . 95
Estimated pose £=2040 ¢cm, y= 120.0cm, § =0.0°. . . ... .. .. .. 95
Correct pose £=2050.77 cm, y= 116.23, 6 =1.97°. . . . . .. .. . ... 96
Autonomous mobile robot, Yamabico-11. . . . . . . ... .. .. .. .. 97
Block diagram of Yamabico-11 hardware architecture. . . . . . . .. .. 99

XVi



100.  User program description. . . . . ... ... .. ... ... ....... 105
101.  Structure of the readImage() function. . . . . ... ... ... ... .. 105
102. Edge detection program description. . . . ... .. ... ........ 106

xXVvil




XViil



ACKNOWLEDGMENTS

During the course of my research, there were many people who were instru-
mental in helping me. Without their guidance, help and patience, I would never have
been able to accomplish my goal. These people deserve my appreciation.

First, I would like to thank my family, especially my parents, the first teachers
in my life, for their guidance and encouragement, even thousands of miles from the
United States. Their sincere prayers are always a spiritual force for me.

From my deepest heart, I would like to thank my wife Fadia, and our children
children Ramy and Ranim, for their love, support and patience during many nights
of work away at the office and lab.

I wish to express my deepest gratitude to Professor Yutaka Kanayama, whose
help, support, guidance, and knowledge were driving factors for successful completion
of this dissertation. He is always helpful to his students. He spends many hours in
teaching and helping them to solve their research problems.

I am deeply indebted to my doctoral committee for their guidance, patience,
and wisdom. Professor Craig Rasmussen generously provided me with needed mathe-
matical guidance, as well as with proofreading the dissertation numerous times. The
comments of Professor Thomas Wu, and advice of Professor Xiaoping Yun, were
also exceptionally'helpful. Many thanks to Professor Lynne Grewe for her help and
support during critical periods of time in my research.

I appreciate the continuous help of the technical staff of the Computer Science
Department, particularly of Mike Williams, Rosalie Johnson, Walter Landaker, and
Valerie Brooks for their help in solving technical problems of the various computer
systems.

I also wish to thank my fellow Ph.D. students from Egypt: Col. Nabil Khalil,
LTC. Hesham Eldeeb, Maj. Hazem AbdElhamid, Maj. Ashraf Mamdouh, and Capt.
Osama Kamal for their help and cooperation. Finally I wish to thank Dr. Mahmoud

X1X



Wahdan for his help during the last few years of his research at the Naval Postgraduate
School.

XX



I. INTRODUCTION

A. BACKGROUND

Computer vision is a field of science which deals mainly with the representa-
tion, extraction, and manipulation of objects and information from digital images.
The goal is to devise a way for a computer to interpret images in a useful way. Nat-
urally, what is useful will depend on the application at hand [Ref. 1]. A computer
‘vision system is considered the enterprise of automating and integrating a wide range
of processes and representations used for vision perception. It can be viewed in terms

of the following main functional components [Ref. 2, 3]:

1. Image acquisition.

2. Image processing (transformation, encoding, compression, and transition of
images).

3. Image understanding (image analysis, object detection, and pattern classifica-
tion).

4. Geometrical modeling.

5. Qutput or display..

Image acquisition transforms the visual image of a physical object and its in-
trinsic characteristics into a set of digitized data which can be used by the processing
unit of the system. This task can be considered as comprising illumination, image
formation or focusing, sensing, and formatting camera output signal. Image process-
ing is concerned with transforming an image in one storage area to a new (processed)
image in another storage area. Some basic image-processing operations include fea-
ture enhancement, inversion, brightening, noise suppression, and compression. Image
understanding mainly deals with the analysis of images for the purpose of extracting
useful feature information. A key element in the task of locating features is that of
edge detection. Identifying the locations of edges is essential for object recogni-

tion. Geometric modeling, a part of most of computer vision systems, describes the



structures of objects related to the application domain for which the computer vision
system was designed. Output capabilities are provided by most of the vision systems
to assist the users in making process management decisions and verifying the results.

Over the past three decades, computer vision has evolved into many applica-
tion domains. In each domain, a set of objects, tasks required, and knowledge sources
should be specified. In the aerial images domain, examples of .objects are terrain and
buildings. The tasks required include resource analysis, weather prediction, spying,
missile guidance, and tactical analysis. The knowledge sources for that domain are,
for example, maps and geometrical models of shapes. In the robotics domain, the
three-dimensional indoor or outdoor scenes and mechanical parts are examples of the
objects related to this domain. Tasks required in such a domain include the iden-
tification of objects in the scene for obstacle avoidance, self-localization, and parts
assembly. For the medical domain, the tasks are mainly diagnosis of abnormalities

based on objects, such as body organs, and the design of anatomical models [Ref. 3].

B. IMAGE UNDERSTANDING

The ultimate goal in several computer vision applications is the extraction of
useful information from the image data. The description, interpretation, and under-
standing of the features of an image scene altogether constitute image understanding.
For example, a computer vision system with an image understanding capability used
in industrial applications (such as assembly lines) should distinguish parts and list
their features (as in size and number of holes). Moreover, the system can observe the
parts; determine whether they are within specifications, and generate command sig-
nals according to the determined result. For a robot vision system, the system should
help the robot recognize and interpret various objects and their spatial relationships
in a scene. Motion control and execution should be performed through visual feed-
back from the vision system. Image understanding basically involves the study of

feature extraction, segmentation, classification, and interpretation. A method used



for both feature extraction and segmentation is edge detection. It is a fundamental
problem in image understanding,v and the simplest way to identify objects and obtain
most of the relevant information about them such as shapes, locations, and distances
from the camera. In this dissertation, we consider finding an efficient straight-edge
detection method as a basis for autonomous vehicle visual navigation. Background
information on edge detection will be presented in this chapter, and the principle
of gradient-based edge detection will be presented in the next chapter, followed by

the methods used. A typical image-understanding system is shown in Figure 1. The

classification
Input image action
— Preprocessing Image analysis —
- segmentation Interpretation
- feature extraction

Figure 1. An image-understanding system.

input image is first preprocessed (for instance, by enhancement or proper representa-
tion of the data) [Ref. 4]. The image is then analyzed using segmentation and feature
extraction. The results are fed into a classifier or an interpreter in order to obtain
useful information, such as the relationship between different objects in the scene,

and to let the system take the proper action.

1. Feature Extraction

In the process of feature extraction, it is necessary to extract certain features
of objects from the scene. In an indoor environment image, as shown in Figure 2 for
instance, the system should be able to extract specific features of the indoor struc-

tures, such as the door locations in the hallway. These features serve as landmarks

for visual navigation tasks. By way of comparison, in an X-ray image, the gray-level

amplitude represents the absorption characteristics of the body masses which enables

the discrimination of bones from tissues, or of healthy tissues from diseased tissues

[Ref. 4].



Figure 2. An indoor environment image.

2. Segmentation

The segmentation technique.is required by a vision system in order to isolate
the objects from the background. Segmentation is often imagined as the splitting of
the image into a number of regions, each having a high level of uniformity in some
designated parameter such as brightness, color, or texture [Ref. 5|. One method of
segmentation is the region-growing technique [Ref. 6]. The goal of region-growing
Is to use image characteristics to map individual pixels in an input image to sets of
pixels, called regions [Ref. 3]. In this technique, pixels are placed in a region on the
basis of their similar intensity. Similar adjacent regions are then merged sequentially
to form larger regions [Ref. 4]. This technique is found to be useful with the aid of
edge detection. However, the technique tends to be quite computationally intensive
[Ref. 5]. Another method of segmentation is that of template matching where an
image is matched against templates from a given list in order to locate objects [Ref.
4]. Another method of segmentation 1s thresholding the image at a particular intensity
level. This method results in setting the objects as black figures on a white background

according to binary images [Ref. 5].



3. Classification and Interpretation

These tasks of image understanding are concerned with the ability of the vision
system to interpret the obtained information from segmentation or feature extraction.
This is done to provide a description of the objects in an image scene in a useful way.
Several techniques are used in these tasks, including pattern recognition, supervised
classification, statistical classification, clustering, decision trees, and similarity mea-
sures [Ref. 4]. An important method of interpretation by an image understanding
system for autonomous mobile robots is that of matching between line segments

(edges) of objects in an image and those of an indoor structure.

C. AUTONOMOUS VEHICLES AND VISION

Among the real-world applications of Artificial Intelligence are those of the
autonomous mobile robot vehicles. They are defined as those vehicles that are capable
of intelligent motion and action without requiring further human intervention [Ref.
8]. Many individual components and research fields can be integrated for autonomous
vehicle development. Such components include motion planning (for example in [Ref.
9, 10, 11, 12]), image understanding (as in [Ref. 13, 14]), control (some examples
are in [Ref. 15, 16]), kinematics [Ref. 17], sonar technology [Ref. 18, 19] , electronic
circuits, system architecture, programming, neural networks [Ref. 20], and fuzzy logic
and control [Ref. 21].

Research in the area of autonomous vehicles is- of major practical interest.
There are several potential applications of autonomous vehicles, such as manufactur-
ing, construction, waste management, space and undersea exploration, assistance for
the disabled, intelligent wheel-chairs for the handicapped, medical surgery, remote
repair and maintenance, military operations, and material-handling system for offices
and factories [Ref. 8, 22].

In military applications, emphasis is placed on using autonomous vehicles for

handling a myriad of hazardous duty assignments [Ref. 9] like mine searching, UXO




clearing, reconnaissance, and fire fighting. A semi-autonomous vehicle called Shepherd
is under development at the Naval Postgraduate School for research in mine detection
and UXO clearing.

Many of the above tasks require image understanding as an essential compo-
nent, especially for visual navigation and guidance control of the vehicles in either
outdoor or indoor environments. We define the visual navigation of an autonomous
vehicle as “the ability of an autonomous vehicle to perform efficiently its global and -
local motion planning in a pértially known environment under the guidance of a vi-
sion sensor”. The visual navigation of autonomous vehicles in an indoor environment
involves several aspects. Each can be considered as a stand-alone problem. Im-
age analysis, model interpretation, pose estimation, object recognition, and obstacle

avoidance are examples of these problems.

1. Vision-Guided Navigation

Vision-guided navigation was the focus of a number of researchers. Lebegue
and Aggarwal [Ref. 23] developed an algorithm for automatically constructing CAD
models of a structured scene as imaged by a single camera on a mobile robot. The
scene to be modeled is assumed to be composed mostly of linear edges with particular
orientations in 3D. Bishay, Peters and Kawamura, [Ref. 14] developed a system that
can detect stationary objeéts In an indoor scene, using log-polar mapping for the
purpose of building a map for the environment to guide the robot from one place
to another. This system was developed so that the size of the log-polar map is
64 x 64 pixels. This is not suitable for the high-resolution images currently being
used. Buger and Bhamus [Ref. 24] investigated the problem of estimating the camera
motion parameters from a 2D image sequence that has been obtained under combined
3D camera translation and rotation. They solved the problem using the concept of
“Focus Of Expansion (FOE) feasibility”. Taylor and Kriegman presented in [Ref. 25]
an algorithm that would enable a mobile robot equipped with a visual recognition

system to carry out a systematic exploration of an unfamiliar environment in search of



one or more recognizable targets. Huttenlocher, Leventon, and Rucklidge presented
in [Ref. 26] a method of using a sequence of monocular images for navigating a
robot from an initial position to a specified landmark in its visual field. Lazanas and
Latombe [Ref. 27] investigated the problem of developing navigation algorithms that
rely on the ability of the robot to recognize and localize a specific set of landmarks at
known positions in the environment. The problem of exploring an unknown polygonal
room with a bounded number of polygonal obstacles was investigated in [Ref. 28] by
Deng et al. Other applications of image understanding as an essential component have
been recognized in many areas. For example, a mobile robot system is presented in
[Ref. 29], on which a human can ride and sharg access to the environment through
visual navigation. In [Ref. 30] a robotic system for guiding the blind on the road or
sidewalk is presented.

Some projects were dedicated for the research in mobile robot vision. The
FINALE vision-guided mobile robot system, which navigates in an indoor environ-
ment at a speed of 10 meters per minute in the presence of obstacles, was presented in
- [Ref. 13, 31]. This model-based system matched landmarks in the scene with features
extracted from the images, to perform self-localization. However, it was limited to
stop-and-start motion, since the robot had to be motionless to obtain an accurate
video image. The NAVLAB [Ref. 7] is a commercial truck converted into a robot
vehicle. It contains several on-board general-purpose computer workstations, as well
as a WARP parallel architecture computer. Its sensors include color TV cameras and
an ERIM laser range finder. Another approach to visual modeling and recognition is
concerned with developing techniques for automatically building a representation of
a complex physical environment (e.g., natural terrain populated with objects such as
roads, bridges, bushes, and trees) based on data from ilﬁaging sensors and previously
stored knowledge. UMass Mobile Perception Laboratory (MPL) [Ref. 32] is a simi-
lar effort to build a landmark-based autonomous vehicle system composed of several

independent processes, each solving a particular aspect of the navigation problem.




These are then integrated into a fully capable autonomous vehicle for both on-road
and cross-country navigation. The integrated system was designed to “react” in real
time to a changing environment and to “reason” about ways to achieve its goals. This
autonomous vehicle performs pose determination in 30 seconds to 1 minute, which is
very slow in real time. At 5 MPH an obstacle at 30 feet can be :;Lvoided if the obstacle
is at least 2 feet high.

The major problem with image understanding tasks in robotics is the expensive
computation time required fof image processing and then for image analysis. The
computation time is very critical, since slow performance of image understanding
algorithms leads to hazardous situations in real time. Developing efficient image
understanding methods is one of the more challenging problems in both computer

vision and robotics research.

D. PROBLEM STATEMENTS

The objective in this dissertation is to investigate a new efficient model-based
image understanding method for an indoor autonomous vehicle, for both military and
industrial applications, through a fast straight-edge detection algorithm.

This work is part of the research project for the Naval Postgraduate School’s
autonomous mobile robot vehicle Yamabico-11. Several previous efforts in motion
planning [Ref. 9, 10, 11], automated cartography [Ref. 33], sonar-based obstacle
avoidance [Ref. 34], and image understanding [Ref. 35, 36, 37, 38] have made con-
tributions to the project. We expect this research to produce significant and efficient
methods to integrate image understanding with previous efforts and the current soft-

ware system on the robot.

1. Problem Definition
The problem addressed herein is: How can the model-based image understand-
ing task for an autonomous vehicle be accelerated? The problem is decomposed into

the following sub-problems:



L

How can the straight-edge detectibn, as a basic function in image understand-
ing, be performed efficiently?

How can the vehicle’s world environment be modeled so that its interpretation
function within the image-understanding task is executed rapidly?

How can the correct pose of the vehicle be found efficiently, given the con-
structed model, the estimated pose, and the camera parameters?

2. Assumptions

The following assumptions and limitations were incorporated into the research

in order to focus the work on the image-understanding problem:

A single CCD (Charge-Coupled Device) vision system is used.

The camera parameters (image size, focal length, physical size of CCD image
plane) and field of view are already set and known.

The vehicle is operating in a partially known, orthogonal indoor world: walls,
ceilings, door frames and floor meet at right angles. (These are perfectly suit-
able for the current operating environment of the testbed vehicle Yamabico-11,
which is the second floor of Spanagel Hall at the Naval Postgraduate School.)

The vehicle has dead reckoning capability.

The vehicle’s operating environment is bounded by a clockwise polygon (see
Chapter VI).

PREVIOUS WORK
1. Edge Detection

Many researchers have worked toward solving the straight edge detection prob-

lem. The ability to solve this problem is required in robotics and in other areas. For

instance, matching between straight edges in an image plane and those in a world |

model is especially important in model-based real-time robot navigation'and in object

recognition.

The approaches to the problem of edge detection vary from one application to

another. Some are highly dependent on the knowledge of the images being processed.



Bolles [Ref. 39] described the idea of adjusting a boundary estimate by carrying lo-
cal searches out at regular intervals along directions perpendicular to the estimated
boundary. Another method was de\}eloped for some medical applications [Ref. 40]
using divide-and-conquer for boundary detection. The Hough transformation for de-
tecting lines and curves, introduced in [Ref. 41], is considéred one of the standard
techniques. Although this method by itself does not give the endpoints of the detected
edges, Dudani and Luck [Ref. 42] included a least-squares fitting procedure into this
method to obtain the endpoints of the detected line. Martelli proposed a heuristic
search method to follow edges in images and, by doing so, converted the problem of
edge finding into a graph searching problem [Ref. 43] using the A* algorithm [Ref.
44, 45]. Some applications of dynamic programming were described in [Ref. 3, 46].
The contour-folloﬁing method can find regions for a given binary image even with-
out any knowledge on the boundary shape [Ref. 47]. The method was adapted to
gray-level images, as described in [Ref. 48]. The algorithm presented in [Ref. 49
requires scanning the whole image to obtain line-support regions and then determine
the location and properties of the edges. Some other researchers followed this ap-
proach with slight modifications [Ref. 50, 51]. Other methods also used the whole
image scanning strategy with different edge detectors and modules [Ref. 52, 53]. A
contour-tracing algorithm was proposed in [Ref. 54], based on a priori knowledge
about the edges to be searched. Marr and Hildreth [Ref. 55| discussed a theory of
edge detection using a two-dimensional Gaussian operator. Although this theory was
highly influential in the following few years, it has the problem of expensive com-
putational time since it requires preprocessing the images in order to study them at
different scales [Ref. 5]. The computational approach to edge detection by J. Canny
[Ref. 56] has emerged from this approach with emphasis on the optimality of the
detector at any scale and on dealing with different signal-to-noise ratios in the image.
He formulated the criteria desired in any edge detéction operator as good detection,

good localization, and only one response to a single edge. A variation of the Canny
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operator is presented in [Ref. 57] to optimize the composite criteria using the calculus
of variations. These approaches, and others discussed in [Ref. 5], are concerned with
signal-to-noise ratios and the accuracy with which edge magnitude and orientation
can be estimated. Davies and Johnstone [Ref. 58, 59] used the Sobel operator in the
edge-detection task on enhanced images of their project, with slow execution time.
A general discussion about using parallel processing and hardware implementation
to speed the image processing tasks is found in [Ref. 5]. However, our approach in

speeding up the edge detection is based on a single processor computer system.

2. Pose Determination

For an autonomous vehicle moving in a certain environment, some positional
errors occur and accumulate. Thus, this problem of robot localization (pose deter-
mination) has received the attention of several researchers in the mobile robot field.
Some used model-sonar based navigation [Ref. 11, 60] to solve the problem. We will
give a brief summary of previous efforts in the field of visual navigation.

Fischler and Bolles [Ref. 61] solved for the lengths of rays from the optical cen-
ter of the camera to the points in 3D space. The closed-form solution they presented
is quite complex. Using triangle pairs and the Hough transform, Linnainmaa et al.
solved the problem of finding the coordinates of the 3D points in camera coordinates
[Ref. 62]. The approach used in [Ref. 63] was to decompose the solution into two
stages, for rotation first and then for translation, with another method for simulta-
neous rotation and translation. With the scanning method for edge detection and a
complete 3D model, Peterson [Ref. 35] used Sugihara’s principle [Ref. 64] in the pose
determination. Using a CCD video camera coupled with a conic reflector, Pegrad
and Mouaddib [Ref. 65] obtained omni-directional views and presented a method for
localization from natural landmarks obtained in the navigation area. Another ap-
proach was taken in [Ref. 66] by converting a sequence of image measurements into
a representation of the robot’s pose. Although this method does not require explicit

environment modeling, it has the overhead of a collection of training examples, each
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of which specifies the video image observed when the robot is at a particular location

and orientation.

F. ORGANIZATION OF DISSERTATION

The remainder of this dissertation is organized as follows: Chapter II discusses
the principles of image representation and edge detection as a basic function for
several image understanding algorithms. Chapter III presents edge detection using
the concept of gradient regions by image scanning. In Chapter IV, we present a
novel and robust algorithm for edge detection using direction-controlled edge tracking.
Chapter V describes a global method for detecting all important edges by introducing
the concept of random hitting. In this method, finding an edge multiple times is
eliminated. Chapter VI describes world modeling of the operating environment of an
autonomous vehicle, and shows a simple method for modeling the environment by
what is called a Q%D model. Chapter VII diséusses how to use this model and the
robust edge tracking method to perform pose determination. In Chapter VIII, we
give a brief description of the hardware/software system of the autonomous mobile
robot vehicle Yamabico-11 at the Naval Postgraduate School, with emphasis on the
image system mounted on the robot. Chapter IX summarizes the contributions of

this dissertation with recommendations for future work.
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II. PRINCIPLE OF STRAIGHT-EDGE
DETECTION USING GRADIENTS

A. IMAGE REPRESENTATION

An iniage function is a mathematical representation of an image. Generally, a
gray-scale image 7 is represented in terms of the intensity (or brightness of the gray
level) f(p) for each pixel p = (z,y). Such a gray-scale image is W pixels wide and H

‘pixels high. An example of a gray-scale image is shown in Figure 3. Thus, an image

Figure 3. A gray-scale image.

is described by means of a W x H matrix of nonnegative integer values f(z,y) that
indicate the light intensity of the pixel with coordinates (z,y), as shown in Figure 4,
where the origin (position (0,0)) of the matrix is at the left bottom corner. This
makes the matrix correspond to the pixel coordinates in the image plane, although
this may not be éompatible with the known definition of matrices. The range of
values assigned to the gray level of pixels in images usually depends on the number
of bits to be used for representing the gray-scale values. Thus, the total number of

levels in a gray-scale image is usually a power of 2. Most computer systems now
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Figure 4. Matrix representation of image plane.

support representation of eight bits for the gray-scale values. Thus, they range from
0 to 28 — 1 (or 255). The value 0 is assigned for black, and 255 for white. For the
6 x 6 image shown in Figure 5, the corresponding gray-scale pixel values are shown

in the image matrix in Figure 6.

Figure 5. A simple 6 x 6 gray-scale image.

[ 255 255 255 255 255 255
255 20 20 20 20 255
255 20 20 20 20 255
255 20 20 20 20 255
255 20 20 20 20 255

| 255 255 255 255 255 255 |

Figure 6. Gray-level values of the 6 x 6 image.



For a 16 x 16 pixel window on an image of a polygonal object, as shown in

Figure 7, the actual gray-level values of its pixels are shown in Figure 8.

Figure 7. A 16 x 16 window on an image of a polygonal object.

B. EDGE DETECTION PROBLEM

The problem of fundamental importance in image analysis is the edge detection
problem. Usually, edges in an image are boundaries of objects. Thus, edge detection
is the simplest way to identify important contours and objects in the image. Edges
are curves or lines in the image plane across which there is an abrupt change in
brightness. By using the difference in gray level between image pixels, we can locate
the boundaries of objects. By doing so, most of the relevant information about object
shape, location, and distance from camera can be obtained. For instance, the image
in Figure 5 has four edges.

A gradient region is a small region in an image where light intensities are
changing rapidly. It is defined as an intensity discontinuity in the image [Ref. 3].

The problem now is how to locate those regions in a given image, and then find -
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Figure 8. Gray-level values of the window pixels in the polygonal object image from
Figure 7.

their corresponding edges. In the following two sections, a solution to this problem

1s presented.

C. GRADIENT DIRECTIONS AND GRADIENT RE-
GIONS
1. Gradient Computation

A basic and common step in the process of detecting edges in a gray-scale
image is to compute the gradient at each pixel. The partial derivatives %ﬁl and %ﬂz
of the intensity function f of a pixel p with respect to z and y can be computed using
a gradient operator. A gradient operator is represented by a pair of masks, A, and
Ay. Each mask is a square matrix of weights mapped onto a group of pixels around
an origin (or center) pixel. The mask A, will be used for computing the horizontal
direction gradient, and A, for the vertical direction gradient. There are several edge

operators that can be used in edge detection [Ref. 67]. Figure 9 shows three of
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the well-known oﬁerators. In Figure 10, we show 3 x 3 pixel locations. The eight

Operator A, Ay
01 1 0
Roberts [ 1 0 ] [ 0 -1 ]
| -1 0 1] T 11 1]
Prewitt -1 0 1 0 0 0
-1 0 1 | -1 -1 -1
[ —1 0 17 1 2 1
Sobel -2 0 2 0
| -1 0 1| | -1 -2 -1 |

Figure 9. Gradient operators.

surrounding pixels about a center pixel at location p = (z,y) will be used to find the

gradient information for pixel p.

(z-Ly+1) (z,y+1) (z+1,y+1)
(z—-1,y) (z,y) (z+1,y)
(x—lay_l) (.’Z},y—l) (‘Z'*'l’y_l)

Figure 10. Indices of 3 x 3 pixel set, centered at pixel p = (z,y).

The two gradient components g,(p) = Male and g,(p) = %{}’l can be computed
using the Sobel operator by multiplying each of the weights corresponding to those

pixels in S on each mask with its intensity value.
6:(p) = ~fle=Ly—1)-2f(z=1Ly) - flz =Ly +1)
+fz+Ly-1)+2f(z+1,y) + f(z + 1,y +1),
o) = fle-Ly+1)+2f(z,y+1)+ flz+1,y+1)

—f(.’L‘—l,y—].)—Qf(.’ll,y—].)—f(l'-*-l,y—-l)-

Then the gradient magnitude g(p) is computed from these two orthogonal gradient

components (Figure 11) as follows:
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9z

Figure 11. Gradient components as vectors.

9(p) = V(9:(0)) + (6 (p))%,

when g(p) > 0, its gradient direction ¢(p) is defined as

$(p) = atan2(gy(p), 9:(p))-

The function atan2 (gy(p), gz(p)) gives the direction in four quadrants [—m,7]. It is
more useful than the mathematical equation tan=! (gy (p)/9:(p) ) because the latter
has range [—g—,% ] and is not defined when g,(p) = 0 [Ref. 68]. The gradient
direction information of pixels is extremely valuable in the straight edge detection
task, as shown later.

A pixel p is said to be significant if its gradient magnitude g(p) is greater than
some threshold value. The gradient image (the image with only pixels of significant

gradient magnitudes) obtained from the original gray-scale image in Figure 3 is shown

in Figure 12.

2. Gradient Regions

Let 9 be the direction of a straight edge L in an image, and let p be a pixel in
L (Figure 13). Then the gradient direction ¢(p) must be approximately orthogonal
to 4. The relation between the edge direction ¢ and the gradient direction ¢(p) is
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Figure 12. A gradient image.

defined by ¢(p) =~ ¥+ Z or o — 2. Therefore, all pixels in one straight edge must have
a similar gradient direction ¢. We say “similar” because noise can affect the value of .
#(p). Through this observation, we can define a “gradient region”. A gradient region

R in an image 7 is a set of pixels that satisfies the following conditions:

\Edge direction v

Gradient
direction

Figure 13. Gradient and edge directions.
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(1) Each pixel p in R has a significant gradient magnitude g(p).

(2) Each pixel p in R has a similar gradient direction #(p).

(3) All pixels in R are connected by eight-neighborhood (any two pixels in R must

be adjacent within a 3 X 3 window and one of them is the center of this window).
Figure 14 is a blowup of a part of Figure 12, including boundaries of the light

switch beside the door lock. It shows four distinct gradient regions, and each pixel in

| ]
o000
o000
Q00
o000

*k ok
193% $93%% K keok ok
198%%0%0% % %0 0% %% 198%% Kkok Kk
OOQQOOOOOOBOVQOOOOOOY  *kkk
$93%0%0% %% 0000000000000 Kok ok
L 193%0%% %% [94%6% Ok kkk
OOOOOOOOOOOOOOOOOOOOOOOOO
199%%0°00%%0°6°6%0 %0 6 0% %0 0% 0% e e e v
diviiivitiviidivluiilulilolvi e

Figure 14. Four distinct gradient regions in the gradient image.

a particular gradient region R is represented by a unique symbol.
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D. FINDING EDGE FEATURES BY LEAST-SQUARES
FITTING |

Assuming that we find an edge region, the next task is to find its linear features.
The least-squares linear fitting algorithm [Ref. 69] is a very robust and helpful method
for doing this. Although it was originally used to find line segments from sonar return
data for mobile robot navigation, it can be used in image understanding as well.
For a set R of pixels representing one gradient region, where R = {py,...,p,} and
p; = (zi,9;), we obtain the moments m;x by
mjk = zn:$ijyika
i=1
where 0 < 7,k <2 and 7 + k£ < 2. Actually, mgo = n.
The secondary moments M;; around the centroid C = (5, py) Where p, = 22

moo

and g, = 2% are

moo
_ v 2 miy
My = Z(xz — fz)* = mgo — —,
=1 Moo
- miom
My = 3 (2 = ) (3 — py) = mag — 2o
=1 v Moo
n m2
Moz = ) (yi — py)* = oz — —=
i=1 Moo
A pixel p = (z,y) that satisfies
rcosa+ysina=r ' (I1.1)

lies on a line L whose normal has an orientation a and whose distance from the origin
is v (Figure 15). We represent this line L by (o, ). This representation has a striking
advantage as opposed to the usual method of using a formula y = f(z), beca,use-
the former method has no difficulty in expressing lines that are perpendicular to the
z axis. The signed distance (or residual) é; from a pixel p; = (z;, y;) to the line
L= (ra)is

b; = z;cosa+ y;sina — 7.
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Figure 15. Set of pixels and their fitted line

Therefore, the sum of the squares of all the residuals is
S = Z((a‘:icos a+y;sina) — r)z.
=1

Since the line which best fits the set of points is supposed to minimize S , the optimum

line (r, &) must satisfy

59_5' 0§ -
or  Oda
Thus,
%g = ——2;((:::1- cos a + yisina) — r)
= 2 (TZ] — cosaZ—sinaZy,-)
=1 =1 =1
= 2(r Mmoo — My cos a@ — Mgy sin a) =0,
and
r= m(:osa—}—@sinoz:pxcosoz—l-/zysinoz, (I1.2)
Moo Moo

where r may be negative. Substituting r in Eq. II.1 by Eq. IL.2, we obtain

a5 = . .
% = 2;((@ — piz) cos & + (y; — ) sin a) (—(:ci — pe)sina 4+ (y; — py) cos a)
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= 2%((% — piy)? — (zi — ,ux)z) sin o cos &

=1
+2) (i = pa)(ys — py)(cos® & — sin® a)
i=1
= (Moz — My)sin2a + 2My; cos 2a = 0.
Therefore,

2a = atan2(—2M;1, Moy — Myo). (IL.3)

Note that, by Eq. I1.3, the value of 2« can be in any quadrant, and so o € [-Z, %]
Eqgs. II.2 and I1.3 are the solutions to the least-squares fitting problem.
¥

0]

Figure 16. Two endpoints of a line segment L.
Since the residual é; of a pixel p; = (z;,y;) is given by
0 =z;cosa+y;sina—r,
the projection, p} of the point p; onto the fitted line is
p; = (zi — §;cos a, y; — §;sin ). (IL.4)

We will use p; and p;, as estimates of the endpoints of the line segment L obtained
D n g

from the set of data points R (Figure 16) [Ref. 68].
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E. SUMMARY

The principle of edge detection using gradient regions is described in this
chapter. The principle is illustrated in Figure 17. The first image, the original one,
has three areas with different intensities. There are three gradient regions separating
them. The line segments corresponding to these gfadient regions are then obtained
using the least-squares fitting, as described in the previous section. This principle
can be applied in several ways. In the next chapter we discuss the image-scanning

method using this principle.
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Figure 17. Principle of edge detection using gradient regions.
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II1. STRAIGHT-EDGE-FINDING METHOD
BY SCANNING

The principle of edge detection described in the previous chapter can be applied
in different ways. In this chapter, one such method is presented. In this method, the
whole image is scanned pixel-by-pixel to find those pixels that form gradient regions
and hence the line segments that represent those gradient regions. Figure 18 shows the
conceptual view of the operations performed to detect edges using this method. This
method is different from that used in [Ref. 35] in the technique for forming gradient
regions. The method includes a simpler approach and different data structures for

that purpose, as we will describe. The process is divided into two levels:

o Pixel-level operation: to decide whether each pixel is an “edge” pixel or not,
and to decide in which region this pixel should be included.

o Region-level operation: to find the line segment information for each gradient
region.

In this chapter, an overview of the method is presented, followed by a description of

the algorithm and data structures. Finally, a sample of the experimental results is

presented.

‘A. IMAGE SCANNING

The image is scanned starting from the pixel at (1,1), by excluding the pixels
that exist at the image outer boundaries. For an image with size of W x H pixels,
the pixels on rows 0 and W — 1 are excluded, as well as those on columns 0 and
H — 1, because the Sobel edge operator we are using (see chapter II) requires eight
surrounding pixels about the central pixel. The scanning is performed from left to

right and from bottom to top, as shown in Figure 19.
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GRAY-SCALE IMAGE

* Compute gradient

information . .
pixel-level operations

* Connectivity test and

region growing

GRADIENT REGIONS

Least-squares linear

region-level operation
fitting ¢ P

l LINE SEGMENTS

Figure 18. Main operations for edge detection.

B. CONNECTIVITY TEST

During the scanning process, it is necessary to test whether the pixel has
- significant gradient magnitude g(p) or not. If so, its gradient direction ¢(p) will be
computed. This pixel then becomes a candidate to be a part of some gradient region
in the image. Finding this region for a specified pixel is the subject of this section.
One characteristic of an edge region is the connectivity. The connectivity test of a pixel
~ is intended to see if the pixel can be connected to some gradient region containing
one of its neighbdrs. If the new scanned pixel p = (7,7), such that 1 < i < W — 2
‘and 1 < j < H — 1, then the connectivity test is done for the pixels at (i — 1,7),
(¢—1,7=1), (¢4, — 1), and (z + 1,7 — 1), which means that the test includes the

pixel immediately to the left of the current pixel and the three nearest pixels in the
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Figure 19. Scanning direction.

next lower row. This situation is shown in Figure 20, where the current pixel at
(z,7) is represented by a bullet and the pixels indicated by shaded squares are those
considered in the connectivity test. However, there are some special cases that should
be considered for the connectivify test. For pixels at locations with ;7 = 1, the test
will be done with only one pixel to the left. For pixels at locations with 7 = 1, the
test will be done only with the two pixels (¢,7.— 1) and (¢ 4+ 1,5 — 1). For the pixels
with (z = W — 2), such that 1 < j < H — 1, the test will be done with only three
pixels, (1 —1,7), (¢ — 1,7 — 1), and (3,7 — 1) (Figure 21).

If one of the neighbors of the current pixel p belongs to some region R, and
if the average gradient direction of R is close ¢(p), then the pixel p should be added
to that regioﬁ R, as shown in Figure 22. If it is found that p does not belong to
an existing gradient region, a new region will be created and the new pixel will be
considered the first one in the new region. This situation is shown in Figure 23.

As we add a new pixel to an existing gradient region R, we maintain the
region characteristics. Selecting one out of the neighboring pixels to join its region, if

it belongs to any, is one of the most important tasks in this algorithm. The region of
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scanning direction
———
current
pixel

four neighbor pixels

involved in connectivity
test

Figure 20. General case of connectivity test.

J=H-] |

j= 0 I
i=0 i=W-1

Figure 21. Special cases of connectivity test.

include current pixel
current in region R

selected neighbor pixel
belongs to region R

Figure 22. A pixel is included in the region as one of its neighbors if it satisfies the
connectivity test.
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Start a new region from
current the current pixel

A neighbor pixel in region
R but not close in gradient
direction with current pixel

Figure 23. Current pixel starts a new region if it cannot belong to a region as one of
its neighbors.

the chosen pixel should have the minimum difference in direction between its average

gradient direction and that of the current pixel.

C. DATA STRUCTURES

We describe an image by a two-dimensional array of size W x H. This cor-
responds to our usage of matrix representation of images, explained in the previous
chapter. Each element represents the intensity value f(p) of pixel p = (z,y) with

range of 0 to 255. The image pixel data structure is shown in Figure 24.

Image Pixel

@® Intensity value

Figure 24. An image pixel data structure.

1. Row of Pixels

Two one-dimensional arrays [0..W — 1] of the same structure are used for
storing processed pixel information on the current row in the image (Current) and
the previous row (Previous). Each element of the array is indexed by the z-coordinate

of the pixel and contains the information shown in Figure 25.
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Row Pixel

® Gradient magnitude

@® Gradient direction

@ Pointer to gradient region

Figure 25. Current or previous row pixel data structure.

2. Gradient Regions

Gradient regions are described as a list structure (Figure 26). Each element of

Region1 | @ Region2 | @——> ® L4 o — > Regionn ———1

Figure 26. List structure of gradient regions.

the list corresponds to a gradient region and céntains the moments and least-squares
ﬁttiﬁg parameters of the region and its first and last pixels. At the creation of a
gradient region the parameters should be initialized, and they are updated when a
new pixel is added to the region. From these parameters, the number of pixels, mqp,
is used to judge the strength of a gradient region. A region with a very small number
of ;ﬁxels is interpreted as some noise in the image. It is desirable to have strong
regions to obtain major line segments corresponding to them. Another attribute is
the average value ¢,,, of the gradient directions of the pixels included in the region.
This attribute is used in the comparison to verify the closeness between a pixel and
a region. To obtain the line segment, the moments (mo1,m10, M11,M20, M0o2) and

centroid (uz, fy) are included in the structure. The first and last pixels (¢, and ¢;) of
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the region should be known. They are used to compute the exact endpoints (e; and
ez) of the line segment. The region structure is represented by the parameters shown

in Figure 27.

Gradient Region

Num. of pixels (m 00)

Sum of x-coordinates ( m 10)

Sum of y-coordinates ( maq )

Sum of squares of x-coordinates ( myo )
Sum of squares of y-coordinates ( may )

Sum of products of x and y-coordinates ( m 11)

x-value of centroid ( L %)

@ y-value of centroid ( y )

® Starting pixel (¢; )

@ End pixel (q2)

@ Gradient directions average (¢ av g)

@ Pointer to next region ( Next)

Figure 27. Gradient region data structure.

3. Line Segment

A detected line segment L is represented by the parameters shown in Figure 28.
These include the two endpoints e; and ey, as well as the orientation « of the normal
from the origin to L and the length r of the normal to L (See Chapter II). The

number of pixels (moo) of its gradient region also is included.
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Line Segment

@ Number of pixels (m )
@ First éndpoint ( ¢} )

@® Second endpoint ( e )

@® Length of its normal ( r )

@ Orientation of the normal ( o)

Figure 28. Line segment data structure.

D. ALGORITHM

In this section, we describe the pseudo-code of the major algorithms of the
method. Specifically, the main algorithm, the method to compute the gradient in-
formation at each pixel, the connectivity test, the least-squares fitting, and com-
putation of the endpoints of the detected line segments will be discussed. The
main algorithm is shown in Figure 29. The scanning is performed pixel-by-pixel
(Line 1). The gradient' magnitude g at pixel p is computed using the function |
ComputeGradientMagnitude(p,Z) in Line 2. If the computed value is larger than
some threshold value G; (Line 3), then p is considered significant, and hence the
gradient direction ¢ will be computed in Line 4. Then the region R to which p will
be included is returned as a result of performing the function ConnectivityTest(p,
Current, Previous), in Line 5. In this function, we examine the neighboring pixels to
p in the current and previous rows (as explained in Section B). One of two actions
is performed based on the connectivity test. If a new region is created, it should be
initialized with p as the first pixel (Lines 6-7). If p can be included in an already open
region, we update the least-squares fitting parameters of the region and set the last
pixel in R to be p. This is done through the function UpdateRegion(R,p) in Line

9. After the scanning process is completed, the next task is to scan through the list
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DetectEdgesByScanning(7)
begin
1. for each image pixel p € 7 do

2. 9(p) = ComputeGradientMagnitude(p, Z, g, 9,)
3. if g(p) > G, then :

4. ¢(p) = atan2(gy, 9)

5. ConnectivityTest(p,Current,Previous, R)
6. if NewRegion(R)

7. InitializeRegion(R, p)

8. else

9. UpdateRegion(R, p)

10. for each edge region R

12. LeastSquaresFitting( R, o, 1)

13. ComputeEndpoints(g1(R), ¢2(R), e, T, €1, €2)
14. return (mg(R), a,r, €1, €2)

15. else :

16. return nil

end

Figure 29. The main algorithm for edge detection by scanning.

of regions (Line 10). For any region that has a sufficient number of pixels (Line 11),
we compute the segment parameters by the least-squares linear fitting, and the exact
two endpoints (Lines 12-13) using the values of the first pixel in R, which we denote
¢1(R) and last pixel ég(R).

1. Computing Gradient Magnitude

The function ComputeGradientMagnitude is used to apply the Sobel op-
erator at pixel p = (z,y) for compu‘ﬁing its gradient magnitude. The Sobel edge
detector provides good performance and is relatively insensitive to noise. It provides
a balance between the computation time and the accuracy of edge direction [Ref. 5].
. The algorithm is presented in Figure 30. We use the two dimensional array I[z][y] to

represent the intensity values f(p) for p = (z,y).
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ComputeGradientMagnitude(p,Z, g., g,)

begin

Lo ge=—Ilz—1]ly— 1] -2 x Ilz = 1][y] - [z — 1]y + 1]
+Hlz+ 1y — 1] +2 x I[z + [y + Iz + ][y + 1]

2. gy=—Ilz-1)ly—1] -2 x I[a]ly— 1] - I[z + 1][y — 1]
iz = Uy + 1] +2 x Ia]ly + 1] + Iz + ][y + 1]

3. return /g2 + g2

end

Figure 30. Computing gradient magnitude with Sobel operator.

2. Connectivity Test Function

The general algorithm of connectivity test is presented in F igure 31. In lines
1-8, the regions R; of the neighboring pixels are determined and the differences in
gradient directions d; between ¢(p) and the average gradient direction of each of R;
are computed. We take a region with the minimum difference d;, if this value of d; is
less than some angle threshold or start a new region (Lines 9-14). Finally, the region

R to which the pixel p belongs is determined and returned (Line 15).

3. Least-Squares Fitting

The least-squares fitting is a robust method to compute the parameters of
a line segment that best fits a set of points in a region R. The parameters of
the region are updated when a new pixel p = (z,y) is added to R. The function
UpdateRegion(R, p) performs this task. Now the values of r and « for the normal
to the required line segment can be obtained. They are computed by the function
LeastSquaresFitting, which is presented in Figure 32. Notice that the moments
Moo, M10, M11, M0, and Moy are among the parameters of region R. For simplicity,

we use them without referring to R in the algorithm.
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Connectivity Test(p,Current,Previous,R)

begin

1. R; = Region(Current[z — 1))

2. dy = Normalize(|¢(p) — davg(R1)])

3. R, = Region(Previous[z — 1])

4. dy = Normalize(|¢(p) — ¢aug( R2)|)

5. Rz = Region(Previous[z])

6. ds = Normalize(|¢(p) — Guvg(R3)])

7. R4 = Region(Previous[z + 1])

8. ds = Normalize(|¢(p) — Puvg(R4)]) |

9. (d,7) = MinValueAndIndex(dy, dy, ds, ds)
10. if d > 6 ; no closeness in gradient directions
11. R = CreateRegion()

12. NewRegion(R) = TRUE

13. else

14. R =R,

15. return R

end

Figure 31. General connectivity test algorithm.

LeastSquaresFitting(R, o, 1)

begin '
m2 2
1. M20 = M9y — ;;%mw
2. My =mq — %
3. Moy = mgy — %?;;L
4, a=05x atan2(—2M11, M02 — Mzo)
5. 1= py X cos(a) + py X sin(a)
6. return (o,r)
end

Figure 32. Least-squares fitting of a region.
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ComputeEndPoints(q1, g2, o, 7, €1, €3)
begin '
1. 61 =z4 X cos(a) + yu X sin(a) —r

2. by = x4 X cos(a) + yg2 X sin(a) —r
3.z =1xy — b X cos(a)

4. Y1 =yn — & X sin(a)

5. zy = x4 — 6 X cos(a)

6. y2 =y — b X sin(a)

7. return (e; = (z1,y1), €2 = (22,92))
end

Figure 33. Endpoints computation algorithm.

4. Computing Endpoints of Segments
After computing the least-squares parameters (r, a), we compute the two end-
points e; = (z1,y1) and ez = (22,2), using the first pixel ¢; = (241,9,1) and last

pixel g2 = (42,Y42). This is described in Figure 33.

E. EXPERIMENTAL RESULTS

The algorithm was tested on actual images taken by a CCD camera. The input
images shown in Figures 34 and 36 are used to produce the line segments shown in

Figures 35 and 37, respectively, using.the edge detection algorithm described.
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IV. DIRECTION-CONTROLLED EDGE
TRACKING METHOD

A. PRINCIPLE

In this chapter we present a new method of detecting an edge, called “Direction-
Controlled Edge Tracking” [Ref. 70]. Given a significant pixel py in an image, the
edge tracking task is to find a sequence @ of pixels on the edge containing p;. This
task is performed in two opposite directions (3 and ¢_) that are approximately

orthogonal to the gradient direction ¢(po), as shown in Figure 38. To illustrate the

G;adignt
7 direction

$(po)

Figure 38. Edge tracking in two opposite directions.

idea of the algorithm, Figure 39 shows the sequence of pixels obtained by tracking
the slanted edge in the lower right portion of the image shown in Figure 36 in the
previous chapter. The best-fit line segment is also shown. The best-fit line L to Q is
computed through the least-squares fitting method to obtain (i) the normal direction
@, and (ii) the distance r from the origin to the line L. However, finding the equation
of this line is not enough for applications in image understanding which require com-
puting the endpoints of the line segments. While tracking a pixel sequence Q, the two
end pixels of this sequence, ¢; and ¢, are logged. Using these two pixels as the best

estimate of the edge endpoints is not recommended, because noise may affect their
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Figure 39. Edge pixel sequence with its fitted line segment.

positions. Instead, ¢; and ¢, are used to compute the two projected endpoints e; and
ez as explained later. We call a straight line L corresponding to a pixel sequence Q
magjor when the number of pixels n contained in @ is more than a threshold value nq,

say 90.

1. Edge Tracking Algorithm

Given an image / and an initial pixel py, the algorithm returns a line segment
L corresponding to an edge on the image (Figure 40). The overall algorithm for edge
tracking and segment detection is described in Figure 41. The function “TrackPixels”

in lines 2 and 4 is further elaborated in Figure 43.
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Figure 40. Line segment detection by tracking.

B. TRACKING CONTROL BY EDGE DIRECTION

The edge tracking task is performed as a sequence of SelectNextPixel op-
erations which select a neighboring pixel p, from the current pixel p;. In each Se-
le;:tN extPixel operation, selecting the neighboring pixel with the maximum gradient
magnitude is apparently a reasonable strategy, since this criterion minimizes a pos-
sible noise effect. However, if an edge is tracked under this criterion only, a curved

line or a sequence of connected line segments might be tracked. Such a result does

ComputeSegment(py, 7)

begin

1. Q= {po}

2. @ = TrackPixels(po, @, Z, %)
3. ¢ = LastPixel(Q)

4. @ = TrackPixels(po, @,Z,—3)
5. ¢z = LastPixel(Q) :
6. LeastSquaresFitting(Q, a,r,)
7. ComputeEndPoints(q;, g2, i, 7, €1, €2)
8. if (1Q] > no)

9. return (a,r, e, e2)

10. else

11. return nil

end

Figure 41. Edge tracking and segment detection algorithm.
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not meet the requirement of detecting straight edges separately. To avoid this uncon-

trolled tracking, the direction % of the segment being tracked is computed using the
partial @ obtained so far. This direction ¥ is computed at each step and is used to
control the SelectNextPixel process in the following way: (i) ¥ defines three neighbor
pixels from which the next pixel will be selected, and (ii) a selected pixel is tested for

the consistency between its gradient direction and .

1. Tracking Direction Evaluation

To obtain robust orientation information ¥ for @, the least-squares fitting al-
gorithm is applied to Q. By doing this, we obtain the normal direction « of the best
fitted line for it (assuming |@| > 2). Since the direction « is computed by the posi-
tional information of all the pixels collected so far, this value is expected to contain
extremely fine directional information. Notice that the range of o is [—Z,Z]. We
observed in Figure 38 that all pixels in a given straight edge must have a similar gra-

dient direction ¢, and this value should be close to & or # — a. From this observation,

y
\ by =a+

r
2

Figure 42. Finding tracking direction.

we assume that the direction ¢ of an expected edge is perpendicular to a. Therefore,

we compute ¥, and _ as



Y. =a-

ISIE

This relation is shown in Figure 42. Obviously, ¥, and %_ are mutually apart by
7. The edge is first tracked in the direction of 14 in the range of [0, 7], and next it
is tracked in the opposite direction #_ in the range of [—7,0] to complete the edge.
However, in the initial state where @ = {po}, it is impossible to find « by least-squares
fitting. In this case, the gradient direction @(po) is used to evaluate 1. Since the
range of ¢(po) is [—7, 7], we need to normalize it into the interval of [——%, g] to keep

consistency in the evaluation of 9.

v
Py = N(d’(l’o))"—'g-
The normalization function N () for an angle « is defined as follows:

N(y =), ify>3%
N) =3 N(y+7), if y<—Z
v, i —I<y<I

For instance, V(%) = N () = N(-&) = Z.

2. One-Way Pixel Sequence Tracking Algorithm

Figure 43 shows the algorithm of tracking a pixel sequence @ starting with a
pixel po in one way. As mentioned earlier, this procedure is performed twice, 6nce

| in the direction ¢4 (with 8 = %) and next in the direction ¢_ (with 8 = —Z), as

shown in the main edge tracking algorithm (Figure 41). The moment calculation for

the least-squares fitting task is included in lines 4 and 12.

C. SELECTING NEXT PIXEL
1. Quantization of Edge Direction

As outlined in the previous subsection, the edge direction ¢ (¢4 or ¢_) is

utilized in two ways:

1. Finding which specific pixels among eight neighbors should be examined for
selecting a next pixel, and
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TrackPixels(po, Q,Z, 3)
begin
1. if |Q]=1
2. a=N(¢(p))
3. else
4 LeastSquaresFitting(@, e, 7)
3. P1=po
6. doforever;
7 v=a+f
8. p2 = SelectNextPixel(py,v,7)
9. if (p2 = nil)
10 exit
11. Q@ = QU {p:}
12. LeastSquaresFitting(Q, a, )
13. p1 = p2
14. return @
end

Figure 43. Tracking one side of the pixel sequence.

2. Testing whether a pixel among these neighbors has a gradient direction con-
sistent with . '

First, the domain [—, 7] of ¢ is divided into eight sub-domains

20—-1 2241
7‘"
8 8

D,'z[ 71‘J for:=0,---,7.

For instance, ¢ = % belongs to D; = [%7}', gﬂ']. For each sub-domain D;, we assign
a set S; of three neighboring pixels, as shown in Figure 44. For example, if the
current pixel is py = (z,y), and if ¥» € D;, the next pixel must be selected from
S = {(z,y +1),(z + 1,y + 1),(z + 1,y)}, as shown at the top right portion in
Figure 44. The pixel (z + 1,y + 1) is precisely located in the direction Z from the
pixel p;. The set §; includes two more neighboring pixels of (z + 1,y + 1).

2. Next Pixel Selection

Given the set S;, the selection of a next pixel p; is performed as follows:
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Figure 44. Next pixel set for each range D;.

e We choose the most significant pixel py in S;, and

o Test whether its gradient direction ¢(p;) and the tracking direction v are
consistent, i.e., ¢(p;) is approximately normal to .

Definition: Two directions ¢ and ) are considered to be consistent if
eloes-3) e

for a small angle threshold e.

If the most signiﬁcant pixel passes this test, it is defined to be the next pixel P
If this consistency condition is not satisfied for the most significant pixel, then we test
whether there is another sigﬁiﬁcant pixel in &;. If so, the consistency test is executed
again for this pixel. If this is consistent, this becomes the next pixel p,. Otherwise,
the test is executed for the last (third) 'pixel in S;. In other words, the selection and
consistency test for the remaining pixels in S; are repeated. Figure 46 shows two
cases: (a) two directions ¢ and ¢ are consistent, or (b) they are inconsistent.

Suppose the next pixel p; is found. In this case, this new pixel will be added
to the pixel sequence ) and is defined as the current pixel p;. From that pixel, the

SelectNextPixel operation will be repeated again. If there is no pixel that satisfies

both conditions, the result nil is returned when one side of tracking task ends in this
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SelectNextPixel(p;, v, T)

begin

1. & = Neighbors(pi, )

2. while S # 0

3. p2 = LargestGradientPixel(S, 7)
4 if Consistent (), #(p2))
5. return p;
6. §=38—{p:}
7. return nil

end

Figure 45. Finding next pixel.

P P Y W
] 7]
¢ =\
(a) Two consistent directions (b) Inconsistent directions

Figure 46. Consistency test.

specific direction (4 or+_). The description of the SelectNextPixel function is given

in Figure 45.

D. COMPUTING SEGMENT PARAMETERS

The least-squares fitting method provides the representation (r, ) of the line
segment that corresponds to the detected edge. However, some other information
may be needed for further processing such as mqg, the number of pixels tracked for

the edge. For many applications including image understanding, an estimate of the
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two endpoints of the line representing Q is also essential. For that purpose, we keep

a record of the first and last pixels (q1,¢2) = (p1,pn) = ((qu,yql), (xqz,yqz)) in the
sequence (). We use their projection points (es,e;) on the line [Ref. 69]. They are

computed as

er = (Zqk — Ok cOs @, Ygk — O sina), for k=1,2,

where

0k =2zgcosa+ ygsina—r, fork=1,2.
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V. A GLOBAL ALGORITHM FOR EDGE
DETECTION USING RANDOM HITTING

To detect all major edges in an image, we want to use the edge tracking
algorithm described in the previous chapter. To obtain initial pixels to start edge
tracking and to minimize processing of insignificant pixels, we introduce the use of a
random-hitting method.

The global algorithm for straight-edge detection is designed as shown in Fig-
ure 47. A random position is computed for an initial pixel py (Line 3). If it is
significant and is not close to any of the previously detected line segments (Line 4),
the edge tracking and segment detection algorithm (Figure 41) is executed starting
from po. If the new line segment L is a major one, it is added to the set £ of detected

major line segments. This process is repeated until K line segments are obtained

(Line 2).

DetectEdges(Z,K,L)
Input : Image: 7 , estimated number of lines : K
Output : Set of line segments: £

begin
1. L=90
. 2. while |£| < K do
3. po = RandomPosition()
4. if ( Significant(po) A NotClose(po, £) )
5. L= ComputeSegment(po, Z)
6. if Major(L)
7. L=L UL
end

Figure 47. Global algorithm for fast straight edge detection.
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A. RANDOM HITTING
1. Concept of Random Hitting

Although the most straightforward approach for detecting all edges in an im-
age is to examine all pixels, most of the pixels in a normal image are insignificant.
Therefore, this method is extremely inefficient. To minimize the number of exami-
nations of insigniﬁcanf pixels, we compute (hit) a pixel position p, randomly. If p,
is significant, the edge tracking algorithm, explained in the previous chaptg:r, 1s exe-
cuted. We adopt the linear congruential pseudo-random integer generating method

[Ref. 71]. A pseudo-random number sequence (R,) is defined as follows:
R,+1 = (aR, 4+ ¢) mod M, n >0, (V.1) -

where M is the modulus (M > 0), a the multiplier (0 < a < M), ¢ the increment
(0 < ¢ < M), and Ry the starting value (0 < Ry < M).

A desirable property for a pseudo-random number generator is that no integer
will be generated twice before the sequence of the pseudo-random numbers includes
all non-negative integers less than M. The following theorem in [Ref. 71] describes a

necessary and sufficient condition to the parameters a and c to satisfy this property.

Theorem V.1 The linear congruential sequence (V.1) defined by M, a, ¢, and Ry
has a period length M if and only if
i) ¢ is relatively prime to M;
i) b=a—1 is a multiple of p, for every prime p dividing M ;
ii5) b is a multiple of 4, if M is a multiple of 4.
Recall that two integers a, b are said to be relatively prime if their greatest common
divisor is 1.

From now on, we let a=1 and let ¢ be a number relatively prime to M to
achieve the maximum period length of M. Furthermore, we apply this pseudb-random
number method to compute a sequence of pixel positions for an image of W x H = M

pixels. Each pseudo-random number R = R; is then converted into a pixel position

p = (z,y) by the transformation

p=(z,y) = (Rmod W, R+ W),
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where W is the width, in pixels, of an image. Then obviously a distinct pair of random
numbers R; énd R; are transformed into distinct pixel positions p; and p;, and vice
versa.

Because it is decided that @ = 1, the next and last decision is on the selection
of ¢. To further simplify the choice of ¢, we propose to choose two numbers ; and k,
with (0 < j < H) and (0 < k < W), where k is relatively prime to W. Then the

value of ¢ is given by
e=jxW+Ek.

We applied this random hitting method to our edge-detection experiments. In our

camera system,
M=Wx H =646 x486 = (2x 17 x 19) x (2 x 3%) = 2% x 3° x 17 x 19 = 313, 956.
Specifically, we chose j = 238 and k£ = 181, then

| c.—_ij+k=238_><646+181;182,999.

To illustrate the concept, in Figure 48 the first ten pixels are shown with the order
in which they are hit using this pseudo-random number scheme. The distribution of
3000 pixels is shown in Figure 49.

Another desirable property for this pseudo-random hitting scheme is that, if
we divide an image into unit areas with the same size, the probability of being hit is
approximately equal for each of them at any time. We found that the previous choice
of ¢ looks as if it satisfies this property of uniform distribution. This pseudo-random

number scheme brought the experimental results presented in Section C.

2. Edge Hitting Probability

We discuss a theoretical analysis for soundness of adopting random hitting to
perform edge detection. We consider an image Z with a total of M pixels. How many
hits are needed to detect a specific small region containing m pixels in Z (Figure 50)7

More precisely, what is the probability for the region to be detected after n hits?
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Figure 48. Distribution of first 10 hits using pseudo-random number generator with
c =283 x 646 + 181 = 182, 999.

First we compute the function f(n), the probability for the region not being

detected in n random hits. This “missing probability function” f(n) is computed as:

o= (452" - (-

o= (-3)"

This is obviously a function of n. Specifically, let n = Z. Then

Let Z =Y Then

m

@ (-3)"

It is well-known that

lim f(h) =

h—o0

o | —

?

where e is the basis of natural logarithm. Since m is a positive integer, the value

of Z is always finite and f(Z) is never precisely equal to % However, for a realistic
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Figure 49. Distribution of 3000 pixels using pseudo-random number generation with

c = 283 x 646 + 181 = 182,999.

value of Z = %, f(Z) is very close to 1. For instance, if Z= 100, the relative error
between f(100) and % is approximately 0.5 % and the one between f(1000) and 1is
approximately 0.05 %. Thus, we can use 1 as a good approximation for f (Z) for a
large value of Z.

Now we explain how this analysis is related to the random hitting algorithm.
Suppose we want to find an edge with a minimum length of 50 pixels . A region
containing such an edge includes at least m=100 pixels. Assuming an image size
of M=300,000 pixels and Z = —%=3000 times, then the missing probabﬂity function
f(3000) = ¢ = 0.36788, and hence the detection probability is approximately 0.63212.
Furthermore, if n = 2Z = 6000, then

2= (1-3)" = ((1-3)7) = (&) ~0uss.

That increases the detection probability to 0.865. Even with 3Z = 9000 which is only
3% of the total number of pixels, the detection probability is about 95%. Table I
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Figure 50. An Image with total of M pixels having an m-pixels region.

shows the approximation of detection probabilities for n = Z, 2Z, 3Z, 4Z, and 5Z.

n || missing probability | detection probability
Z 0.367 0.633

2Z | 0.135 0.865

37 0.049 0.951

47 0.018 0.982

5Z 0.007 0.993

Table I. Approximation of detection probabilities for different n hits.

With this analysis, for k regions in the image, with m;, m,, ---, m; pixels
each, (Figure 51), let

m = minm;.
1

Then, u’sing only 3 x % hits, almost all the segments will be detected. In the examples
of results in this chapter, Section C, we tried to detect most of the maj;)r segments
with at least 50 pixels length (m = 100) from a test image of size 313,956. After only
2960 = 0,94 Z hits, 20 of an expected 24 of those major edges were detected.
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Figure 51. An Image with total of M pixels having different regions.

B. CLOSENESS TEST

In this global edge detection algorithm, a randomly generated pixel py becomes
a “seed” for a new segment if pg is significant. However, when some line segments have
already been detected, the‘newly generated pixel po may lie on one of these segments.
We should avoid blindly tracking the same segment again starting from this pixel po.
Therefore, each randomly generated pixel p, must be examined to determine whether
it is close to any of the previously detected segments. For this test, the distance
d(po, L) between a given point py and a given line segment should be computed. A

segment is represented as

L= €€y = (zlyyl) (w27y2))

where e; and e, are its endpoints with e; # e;. Given a segment L, the plane is
divided into three regions (Figure 52); V], V2, and V;. V] is the set of points p where
e; 1s the closest point on L from p. Likewise, V, is the set of points p such that ez

is the closest point on L from p. V; is the set of points p such that the closest point
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Figure 52. Finding distance from point to line.
on L from p is neither e; nor e;. Given p, if we know the region V; containing p, the
distance d(p, L) is easily obtained. The 2D transformation group theory .[Ref. 72] is

applied to solve this problem of determining V;.
With the segment L, a local coordinate system is defined as follows. One of

the two endpoints, say e;, is considered as origin Oy, (Figure 53). Its local X-axis

(z) is aligned to the segment L, and the orientation 8 of z; is

0 = atan2(y; — y1, 22 — 7).

Thus, the L-coordinate system is represented as gy, = (zy, 1, 6)T in the global image

coordinate system. The pixel position p = (z,y) in the global coordinate system is

converted into the L-coordinates (z*,y*) as follows [Ref. 72]:

¢ = (z—1x1)cosf+ (y—y;)sind (V.2)
y© = —(z—=z1)sin0+ (y —y;)cos . (V.3)
The local z-coordinate of the other endpoint e, is, using Equation (V.2),
(V.4)

T2" = (23 — z1) cos O + (ys — y1)sin 6.
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Figure 53. Pixel position in the L-coordinates

By transforming (z,y) in the image coordinates into (z*, y*) in the L-coordinate
system, the distance d(p, L) can be easily computed as
d(p,e;) ifz*<0
d(p,L) = { |y*| if0 < 2" < 2,

d(p,ez) if z* > z*.

NotClose(p, £)

begin

1. M=L

2. while M # 0 do

3. L = LastSegment(M)
4 ifd(p,L) < §

5. return (false)
6. M=M-{L}

7. return (true)

end

Figure 54. Algorithm for qldseness test.

A threshold value § is assumed for the closeness test. If d(po, L) < 6 for some
previously detected line segment L, we consider pp belongs to this segment L and
the edge tracking is suppressed even though pg is significant. If d(po, L) > é for all
previously detected L, po is considered a new seed and a new edge tracking process

is executed. The closeness test algorithm is shown in Figure 54.
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C. RESULTS

The new method for edge detection using direction-controlled edge tracking
and random hitting, described earlier with its supporting functions, was implemented
on a Silicon Graphics (TM) workstation and on the autonomous mobile robot system
Yamabico-11 at the Naval Postgraduate School. This section presents some of the
experimental results. First, start with an image of a square object as shown in
Figure 55. The processed (examined) pixels, including the 608 randomly hit pixels,
are shown in Figure 56. Figure 57 shows that all four edges of the square are detected
by these 608 hits. This number is less than the total number of pixels in a single row

of this image (646 pixels).

R

\'\...

Figure 55. A square object test image.

For a sample indoor gray-scale image shown in Figure 36, we present the results
of applying the algorithm. Figures 58, 59, 60, and 61 show the ﬁrst 9, 10, 15, and 20
segments detected by this algorithm. In these experiments, line segments having less
than 50 pixels were discarded. The total numbers of random hits needed to obtain
these segments are 77, 345, 985, and 2,960, respectively. Notice that these numbers
are only tiny fractions of the total image size (313,956 pixels). Thus, by a relatively
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Figure 56. Processed pixels before detecting all four line segments.

small number of random hits, most of the major edges can be detected, as expécted
by the theoretical analysis. |

Table II gives more detailed numerical data of the twenty segments detected.

N

Figure 57. All four segments are detected after 608 hits.
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Figure 58. Five line segments detected by 77 hits.

Each row contains the data related to the ¢th line segment detected. For each i, H;
denotes the cumulative number of random hits done until we detect that line segment,

n; the number of pixels tracked in the segment, e;; and ey; its two endpoints, #; the

Figure 59. Ten line segments detected by 345 hits.
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Figure 60. Fifteen line segments detected by 985 hits.

Euclidian distance between the two endpoints, «; the orientation of the normal to
the segment in degrees, and NN; the cumulative number of pixels examined in the

whole process of detecting the first ¢ line segments which also includes the number

Figure 61. Twenty line segments detected by 2960 hits.
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of examined pixels in segments which are not major. It was possible to detect five

| Hip | ng {; e1; €2 o; N;
T| 9340 | 339.014 | (517.308 , 138.094) | (518.762 , 478.005) | -0.246 | 1020
2 36 | 309 | 307.996 | (236.693 , 444.002) | (235.119 136.010) | -0.293 1953
3 45 | 113 | 112.001 | (573.715 , 312.000) | (573.666 , 424.001) 0.025 | 2382
4 49 | 141 | 140.000 | ( 5.899 , 142.000) ( 6.002 , 2.000) 0.042 | 2820
5 77 | 309 | 308.001 | (551.092 , 409.009) | (549.639 , 101.011) | -0.270 | 3951
6 98 | 311 | 310.000 | (476.939 , 444.999) | (477.042 , 134.999) 0.019 | 4905
7 158 | 316 | 314.993 | (350.801 , 130.001) (352.952 , 444.987) -0.391 5865
8 203 | 203 | 202.114 | ( 33.941 , 440.269) | (235.986 , 445.542) | -88.505 | 6543
9 249 | 302 | 301.015 | ( 29.333 139.997) | ( 31.992, 441.000) -0.506 | 7527
10 345 | 426 | 424.004 | (605.151 , 59.999) | (608.068 , 483.993) | -0.394 | 8820
11 503 | 61 | 60.008 | (136.598 , 389.994) | (137.435 , 329.992) 0.799 | 9162
12 5171 98| 97.021 | (183.013, 456.357) | ( 86.013 , 454.378) | -88.832 | 9456
13 || 600 | 97 | 96.047 | (245.001 , 149.018) | (340.097 , 145.010) | 85.145 | 9840
14 973 | 131 | 130.004 | (580.366 , 443.011) | (581.390 , 313.011) 0.451 | 10611
15 985 | 59 | 58.026 | (169.100 , 333.057) (166.084 391.004) 2.979 | 10788
16 || 1028 | 78 | 76.987 | (198.791 , 395.978) | (200.183 319.003) 1.036 | 11022
17 || 1744 | 76 | 67.140 | (549.703 , 104.654) | (600.681 , 60.961) 49.400 | 11961
18 || 2622 75 74.076 | (598.522 , 409.938) (600.329 , 483.992) -1.398 | 12825
19 || 2752 | 79| 78.000 | (228.174 , 318.000) | (228.180 , 396.000) | -0.004 | 13062
20 || 2960 | 125 | 124.008 | (351.995 , 443.870) | (476.001 , 443.330) | 89.750 | 13716

Table II. Data of line segments obtained by the tracking algorithm.

line segments by examining 3951 (=N;) pixels, which is only 1.25% of the total pixels
(313,956). Likewise, to detect 10, 15, and 20 line segments, 8820, 10788, and 13716
pixels had to be processed, which are equal to only 2.8%, 3.43%, and 4.36% of the
total pixels, respectively.

The graph of H; as a function of 7 is shown in Figure 62. The time to detect
the (2 +1)** line segment is generally larger than the time for the i*h line, because the
probability of hitting “undetected” segments becomes lower.

Using several indoor scenes, we made experiments to find the distribution of
the lengths of the edges detected from typical indoor images. We limit the maximum
number of hits to only 3000 for these images. The following table shows the results

for five test images taken in different positions in the hallway and in the lab. Each
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Number of Segments ¢

Figure 62. Number of random hits H; to obtain first 7 segments.

entry in the table shows the total number of obtained segments, and the number of
lines in each of the three ranges of the lengths ¢ (in pixels) of these segments for each

image. The results show that the majority of the line segments in the images have

Image || Num. of Segments | 75.0 < £ < 100.0 | 100.0 < £ < 300.0 | £ > 300.0
1 21 2 17 2 '
2 21 6 12 3
3 23 6 15 2
4 10 3 6 1
5 26 6 17 3

Table III. Number of line segments from several images.

lengths in the range of 100-300 pixels, within which most of the landmarks in the
indoor images fall.

We also made experiments of detecting only vertical edges with a maximum of
3000 hits, since vertical edges are essential in some of the image understanding tasks
in robotics. The results obtained from three images sequentially taken in the hallway

are shown in Table IV. Each entry in the table contains the number of vertical line
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segments detected and how many hits (H < 3000) were actually needed for each

image. The segments obtained are shown in Figures 63, 64, and 65.

Image || Num. of V. Lines | Num. of Hits
1 13 2810
2 12 2857
3 15 2553

Table IV. Number of vertical line segments from a sequence of three images.

Figure 63. Thirteen vertical edges detected by 2810 hits.

Some line segments are detected due to reflections on the floor. These lines
can be interpreted if we have a world model, the camera pose is known, and a proper

pattern matching is performed.

D. SUMMARY

In this chapter, we have presented a global algorithm for a new efficient edge
detection method that avoids exhaustive image scanning. We use a pseudo-random
number scheme to find a starting pixel from which edge tracking for a linear sequence

of pixels is performed. The directional information of the line segment is used to
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Figure 64. Twelve vertical edges detected by 2857 hits.

control the edge tracking. A robust least-squares fitting method is used to obtain the
geometric features for the line segment that best fits the pixel sequence, including its

endpoints. During this new edge detection method, redundant tracking of an edge

Figure 65. Fifteen vertical edges detected by 2553 hits.
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is avoided by the closeness test. In real experiments, we have been able to detect
most of the major edges in a test image of size 313,956 with a very small number of
pixels processed (4.36% of total pixels). In other experiments on some indoor images,
we detected more than twenty major edges, in the range of 75 pixels to more than
400 pixel lengths, by less than 3000 hits. The algorithm also has been tested to
detect vertical edges only. Most of the vertical edges in indoor images were detected
by a total number of hits which is less than 1% of the total number of pixels in
each image. The results obtained from these experiments show that this algorithm is
efficient and useful for numerous image understanding applications and autonomous

robot navigation.
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VI. WORLD MODEL

The geometrical model of the robot’s environment is essential for the inter-
pretation of detected edges which can be used in the self-localization task. Also, the
model is important for detecting obstacles, motion planning, and many other tasks

for the robot.

-A. BACKGROUND

Our efforts toward developing image understanding algorithms are aimed to
be used by the autonomous mobile robots for model-based visual navigation. For the
autonomous mobile robot Yamabico-11 at the Naval Postgraduate School, the current

operating environment is part of the second floor in the Spanagel Hall building. In

- this chapter, we consider the problem of modeling that environment. Some of the.

capabilities needed for the model of the world are based on previous work done on
the fifth floor of the same building [Ref. 36], as well as some techniques of computer
graphics for perspective projection [Ref. 73]. By examining the old model, we noticed
that some simplifications are needed for real-time navigation. We expect the following

three major features for the new model:

1. Simplicity
2. Flexibility

3. Accuracy

A simple model structure has an advantage of saving computation time over a
complex one. By flexibility, we mean that a user can easily modify some portions of
the model, for inétance, to identify additional obstacles in the world without changing
the modeling algorithm itself. By accuracy, we mean that the model should represent
the main landmarks of the environment precisely. This feature is important to support

self-localization (pose determination), obstacle avoidance, and path planning with
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minimal errors; the model must reflect exactly what the robot expects to “see” from

its position and orientation.

B. 2D POLYGONAL WORLD
1. Polygons

a. General Definitions

Polygons are used as the basic building blocks for the world repre-
sentation. A polygon B is represented by an ordered set of n distinct vertices
{v1,v2,- -+, v, }, such that n > 3. Some examples of polygons are given in Figure 66.

A basic function ¢ used in representing a polygon is one that determines the nezt

V4 V3

V2

@ ® © @

Figure 66. Examples of polygons.

vertex for each vertex v;. That function ¢ : B — B is defined as follows [Ref. 68]:

viy1, if1<i<nm.
p(vi) =

V1, ifz =n.

An example of such a polygon’s representation is shown in Figure 67. The polygon
shown has four vertices vy, vs,vs, and vy where ©(v1) = v, p(vy) = v3, p(v3) = vy
and ¢(v4) = vy. The next function ¢ is a bijection, and hence, there exists an inverse
function ¢~ : B — B such that ¢~!(v) determines the “previous vertex” of v. A
segment vp(v) is called an edge joining vertex v to its next vertex o(v).

Definition: A polygon B is called simple if it satisfies the following two

conditions:
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Figure 67. A polygon.

1. No triple of vertices (v, ¢(v), »*(v)) in B are collinear,

2. There is no pair of non-consecutive edges sharing a point in B [Ref. 68].

In Figure 66, there are three simple polygons (a,b, and ¢) and one non-simple polygon
(d).

In our environmental modeling, only simple polygons are used. There
are two types of polygon, based on the direction in which its vertices are traversed

(Figure 68).

o Counterclockwise (CCW) polygon, which is used to represent an obstacle in
the operating environment.

o Clockwise (CW) polygon, which is used to represent an outermost boundary
of the operating environment.

b. Data Structures

A polygon is represented as a doubly-linked list of vertices. The repre-
sentation of each vertex v; has its own (z,y) coordinates, a pointer to its next vertex
¢(vi), and a pointer to its previous vertex ¢~*(v;) (Figure 69).

In Figure 70, we show a data structure for the polygon shown in Fig-

ure 67.
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(A) CCW polygon
Figure 68. CW and CCW Polygon.

Figure 69.

2. World

A vehicle’s 2D environment is represented by a polygonal world model. Gen-

erally, a world W is bounded by an outermost CW polygon and contains zero or more

Vertex

@® x-coordinate

@ y-coordinate

@ pointer to NEXT vertex

@ pointer to PREVIOUS vertex

Data structure of a vertex in a polygon.

(B) CW polygon

1

V2

Y3

V4

72

Figure 70. Data structure of a 4-vertex polygon.




of CCW polygons (obstacles) inside that boundary. An example of a polygonal world
is given in Figure 71.

World Boundary (CW Polygon)

Obstacles (CCW Polygons)

Figure 71. A simple polygonal world.

a. World Data Structures

A world model consists of a linked list of polygons. As described pre-
‘viously, each polygon is represented by a doubly linked list of its vertices. Figure 72
illustrates the general data structure used for the representation of a 2D world model.

b. Yamabico’s 2D World

For our vehicle’s environment, we choose to represent the 2D world with
one CW polygon to represent the boundary of the floor. CCW polygons (obstacles)
were not included in this stage of implementation. However, they can be added later to
the model, if it is needed. The world coordinates are shown in Figure 73. Orientation
of a camera or a vehicle with respect to the model is shown also. Each point on the
floor where a vertical edgevstands is described by its position (z,y) and pointers to
its next and previous vertices. Figure 74 shows the actual 2D representation of the

floor of the environment of the robot Yamabico.
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Figure 72. Representation of 2D world data structure.

C. EXTENDING 2D MODEL TO 3D

Although the 2D representation is appropriate for motion planning, it is not
enough for the image understanding that requires additional information from the
environment. For example, some obstacles cannot be detected by certain sensors,
such as sonars. The motivation of using a camera and a vision system is to provide
information about those objects in the world that are difficult to detect with sonars.
Also, sensing the walls and other 3D objects requires the addition of height information
to the current 2D model.

Due to the consideration of doors and walls as landmarks for visual navigation
tasks, it is an important issue to represent their locations with respect to the 2D
model. For that reason, they have to be modeled in a way that gives the interpretation

of these landmarks when the vehicle performs its motion planning. Figure 75 shows
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Figure 73. World coordinates and orientation of 2nd floor model.
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Figure 74. 2D representation of the hallway.

a simple 3D world consisting of a floor, ceiling, walls, door, and door ceiling.

The environmental 3D model of the second floor in Spanagel Hall has one floor,
three main ceilings, and several door frame “ceilings”. We represent each of those
as a polygon. To obtain 3D modeling, a height value should be associated with each
polygon in the model. Thus, the height value of the floor polygon equals zero, and for
a ceiling polygon it takes the actual height of the ceiling measured from the floor. We
call these polygons representing floor or ceilings world components. Connecting the
vertices from the different world components provides the 3D model. For example,
connecting those vertices on the floor to their correspoﬁding vertices on the ceiling
of a door frame by vertical edges gives the information on the door frame. A simple

example is shown in Figure 76. In this ﬁgure, the door frame is described by a sub-

DI, and EJ.

polygon {B,C,D,E}, a polygon {G,H,I,J}, and vertical edges BG,CH,
Additional description about 3D model are given in [Ref. 36].
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Figure 75. A simple 3D world.

D. 2.D MODEL

A complete 3D model may well be suitable for computer graphics applications.
However, for robot navigation, representing detailed descriptions of environments such
as ceilings may practically hot be needed. Thus, we propose simplifying the model of
the environment to gain more efficiency when it is interpreted by some visual tasks of
the robot. We consider the world as a floor, plus walls and door frames only. The walls
and doors are represented as vertical edges extending from the floor. We call that
model a Z%D model. We expect that other portions of the world are not essential.
Figure 77 shows the 21D representation of the 3D world shown in Figure 75.

That model is mainly the 2D representation of the floor, plus the information
of the height of all model vertical lines extending from the floor. A world view should

show only the vertical model edges. This is intended to save the computational time
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Figure 76. Representation of a door frame in the hallway model.

required to build a complete 3D model which includes details not relevant to the
visual navigation of a robot. For example, the ceilings are higher than the vehicle
and representing them is a waste of storage and increases the processing time. In
Figure 78, the description of the data structure for a vertex in this model is given.

The new model is obtained by:

1. Eliminating any additional representation in the model data structures other
than the 2D polygonal world of the floor, such as ceilings.
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Figure 77. A simple 23D world.

2. Adding the height (z-value) of any vertical edges extending from each vertex
in the floor.

3. Eliminating complex functions that deal with 3D geometrical structures (such
as constructing ceilings and connecting their points to their correspondent
points in the floor by vertical edges).

4. Computing model vertical lines directly from the data structures of the floor
vertices.

In APPENDIX: WORLD MODEL, the model description of the current operating

environment of the autonomous robot Yamabico-11 is given.

E. TRANSFORMING MODEL INTO 2D VIEW

The robot must find a 2D scene from a given viewpoint py and the world

model. After defining the data structures of the model, some graphics functions for
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x-coordinate

y-coordinate
z-value of its vertical edge

pointer to NEXT vertex

pointer to PREVIOUS vertex

Figure 78. Data structure of a vertex in a polygon within the 22D model.

transforming the model edges into 2D view line segments can be used to perform that

task [Ref. 36, 73]. This task includes the following steps:

e Finding the visible points of the hallway floor from py for the 360° angle,
regardless of its orientation.

e Finding the vertical edges extending from the visible floor points obtained in
the previous step.

e Specifying the 2D viewing parameters.

e Projecting extracted features (lines) into the 2D viewing window.

The problem of visibility is to determine a set of visible points in the world
from the given position of the viewing point. We call this process point visibility. To
illustrate this concept, a simple example of a polygonal world is given in Figure 79,
which shows the visible points from the viewing point py marked by a black circle at
each. Several methods for visibility testing can be used. In our implementation of
the environmental modeling for Yamabico, some of the vision system library (on an
SGI machine) included in [Ref. 36] are portions used for the visibility testing.

The perspective projection is a well-known technique in computer graphics and
computer vision. The viewing volume for a perspective projection is called a frustum,

or a truncated pyramid [Ref. 74]. This is shown in Figure 80. Usually the window
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Figure 79. Example of point visibility.

width and height are the same as the dimension of the image produced by the camera
of the vision system. Values of near clipping and far clipping planes should be chosen
appropriately to give the viewer a good sense of the spatial relationship between
different parts of the world [Ref. 73]. One strategy in the modeling is to set the near
clipping value to the focal length of the camera’s lens and the far clipping to be larger
than the distance between the origin of the world and the farthest point in the world
from the origin. The near clipping plane is used to clip objects too close or behind
the viewer (camera), while the far plane clips those objects too far to be seen [Ref.
75]. |

The projection from model lines to 2D view includes several steps, as shown in
Figure 81 and described in [Ref. 73]. They are provided for the vision system library
and implemented by [Ref. 36].

However, in the case of the on-board image understanding algorithms for the
vehicle, the result is not intended for display. It will be stored in data structures
defining the information of the virtual line segments that are expected to be viewed.

The information for each line segment should include its two endpoints within the
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Figure 80. Truncated perspective viewing volume.

view plane. This will be used for the matching procedures against the actual line

segments detected from images taken by the vehicle’s camera.

F. MODELING RESULTS
To implement the model of the second floor on Yamabico and integrate this
implementation with the current vision system and MML, it is necessary to test the

model visually through a graphical workstation to check whether it correctly reflects

3D world
coordinates

2D view

coordinates

viewing
parameters

Figure 81. Steps of 3D world coordinates to 2D view projection.
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the basic features of the environment. In this implementation, both the 3D model
and the Z%D model] were tested from several estimated positions.

Figure 82 shows one 3D model view from a position of the camera estimated by
£=2032 cm, y=124.25 cm, with the viewing orientation of 0 degree (as if the camera
s positioned in the front of the AT and Robotics lab). The field of view angle was set

to 64°, while the focal length was 3.0 cm. The view of the 21D model from the same

Figure 82. Hallway view from £=2032 cm, y=124.25 cm, 6 = 0°, view angle=64° and
focal length=3.0 cm. :

position using the same focal length and field of view angle is shown in Figure 83.

By changing the value of z to 3000 cm, as if the camera were moved 968 cm
from its previous position, the view of the 3D model shown in Figure 84 was obtained.
The corresponding view of the 22D view is shown in Figure 85.

This method was efficient enough. Through these experiments, we concluded
that the model can be added easily for the autonomous mobile robot Yamabico’s
motion planning tasks. One interesting application for which we want to use that
model, together with the new efficient edge detection method, is to obtain a fast

vision-based pose determination algorithm, as we will describe in the next chapter.
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Figure 83. Vertical edges of the hallway using 2;D model from the same view point
as in the previous figure.

—_

Figure 84. Hallway view of the 3D model from =3000 cm, y =124.25 cm, § = 0°.

83



Figure 85. Vertical edges of the hallway using 23D model from the same view point
- as in the previous figure.
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VII. APPLICATION OF EDGE TRACKING
AND MODELING: VISION-BASED POSE
DETERMINATION

A. INTRODUCTION

In the previous chapter, the modeling of the environment in which an au-
tonomous vehicle navigates was described. One of the tasks to be addressed with
such a model is the correction of the position and orientation of the vehicle with
respect to the model. This is one of the important problems for mobile robots. A
common method of positional identification for an autonomous vehicle is odometry,
or dead reckoning. However, this capability is affected by accumulated errors due to
wheel slippage and an uneven floor. Due to these effects, uncertain estimates of the
position and orientation may affect the vehicle’s motion. For the autonomous mobile
robot Yamabico, localization using ultrasonic sensbrs, 2D transformation, and linear
fitting of the sonar return points [Ref. 11] was successfully performed. Some work
has been done on a graphics workstation using a complete 3D model of the previous
environment of the vehicle (fifth floor of Spanagel Hall) and an exhaustive-scanning
edge detection method [Ref. 35]. However,mby making experiments based on that
“work, we found that it takes 19-20 seconds to correct the estimated pose. Thus, we
decided to solve the problem in an improved and more efficient way so that it will be
suitable for further visual navigation tasks of the robot in its current environment.

Our work is mainly aimed at efficiency and robustness improvement in prac-
tical image understanding. Through our proposed improved solution to the problem,
the work mainly includes the following two significant approaches:

1. Applying our new edge detection algorithm using direction-controlled edge
tracking and random hitting [Ref. 70], as described in Chapters IV and V.

2. Using the proposed 21D model rather than using a complete 3D model.

Our geometrical solution to the problem is presented in this chapter as well.
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B. PROBLEM STATEMENT

The problem of pose determination and correction for an autonomous robot’s
visual navigation in an indoor environment can be stated as follows: Given an es-
timated pose g, = (xe,_ye,ze,pe,goe,Oe) where pe, @, and 8. are the roll, pitch and
yaw angles of a camera, an input image 7 taken by the camera, a description of the
environment (world) model M, and the focal length f of the camera, compute the
correct pose g of the camera (Figure 86). We assume that if the optical axis of the
camera is parallel to the floor( p. = 0 and ¢.=0), then the vertical edges in the real
world will appear vertical in the image. We call the positions in the 2D world where

the vertical edges stand control features.

I

Input Image — .

Estimated Pose % .. Correct Pose ¢
— Pose Determination

World Model _ M ___

Focal Length "']'t'—"‘>
of the Camera

Figure 86. Pose determination problem

C. OVERVIEW
First, we adopt the solution of the problem of point location using distinguish-
able marks, proposed by K. Sugihara ([Ref. 64]). The solution idea is used as a basis

for the overall algorithm of the pose determination and correction.

1. Sugihara’s Formulation and Solution of Point Lo-
cation Problem (PLP)

Let p1, p2,--,px be points on a plane and B = (e;ry,,...,7%) be a bunch of rays.
Find the motion M such that the ith ray in M(B) passes through p; for all
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i=1,.. k.

In [Ref. 64], the rays are considered to represent the directions in which a set of
k control features (vertical edges) in the world are observed. Additionally, consider
a situation where these rays are passing through image plane’s extracted vertical
edges. The so'lution addressed there was that if k=3, the camera position is usually

determined uniquely.

2. Camera Pose Determination as PLP
We think of the motion M as the pose of the camera (robot) defined by :

e The position v of the camera in the plane, where the rays ry, ro,..,r; are
originating from v to some other points (p1, p2,..,px) in the plane.

e The orientation 6 of the camera heading.

To apply the solution idea in [Ref. 64], let 1 = Zp,vp; be the viewing angle
fr_om v to p; and p,, and By = /pyvps be the viewing angle from v to p; and ps.
Since we have two constant angles f; and (s, and there is only one possible point
in the given world which has viewing angles ; and (B2 between the control features
D1, P2, and ps, then the unique position should be the precise camera position. It is
determined by a point v on the intersection of two circles, one passes through p; and
p2 such that the angle of the arc p; p; is equal to $; and the other passes through p,
and ps where the angle of the arc p, ps is equal to B, (Figure 87).

D. ALGORITHM

The algorithm is described in Figure 88. Using the 2:D model, we find the 2D
view M; of the 22D model M that represents those vertical edges that are expected
to be seen by a camera with a focal length f at a given pose g. (Line 1), as in
Figure 89. A vertical line in this 2D view should correspond to a single vertical edge
in the modeled world. Using our straight edge detection method, we find a set M,
={l1, 13, 3} of the detected vertical line segments £ (Lines 2 and 3).
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Y41 D2

D3

Figure 87. The intersection of two circles passing through three control features
uniquely determines the camera position.

CorrectPose(f, M,Z,q.)

=n

®
.

=

M; = ProjectModel(g, f, M)

L = detectEdges(Z)

M = Longest3VerticalEdges(£)

for (each [; € M;)
e; = FindBestMatchedModel VerticalLines({;, M;)
pi = 2DworldCoordinatePosition (e;)

B1 = ViewAngle(ly, s, f)

B2 = ViewAngle(ls, I3, f)

9. v = FindActualPose(py, ps, ps3, 51, B2, ge)

10. 8 = CorrectOrientation(f, v, p1, p2, p3, Z, M>)

11. return ¢ = (v,0)

end

e R R

Figure 88. Overview of a fast pose determination algorithm.
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e e e e e

Figure 89. Vertical edges of model expectation 2D view.

To find the correspondence between the features in the 23D model of the
environment and those that exist in the image, it is expected that there exist three
vertical edges e;, ez, and e; in the real world deﬁned‘ by the given model M that
best match those three vertical image lines in M, (Line 5). The matching process is
dressed within the old method in [Ref. 35] and is used in this application.

After obtaining the 2D world coordinates of the positions p;, p2, and p3 on the
floor for each of these three model vertical edges (Line 6), the viewing angles from
the estimated position to those three points are computed. Let z;, 22 and z3 be the
z-coordinates of the intersection point of each vertical image line ; (for 1 < i < 3) and
the horizontal projection of the image plane. Furthermore, let 29 be the z-coordinate

of the image plane’s center. Since the distance to the image plane from v is the focal
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r3 Image Plane

v

Figure 90. Viewing angles from the camera position v to three positions on image
plane lying on the three vertical image lines.

length, the viewing angle B; (between image lines {; and [, from v) and the viewing

angle B, (between I; and I3 from v) can be computed (Lines 7 and 8) as follows :

B = tan™? (wz ; xo) —tan™? (:2:1 ; xo) s
B2 tan™! ($3 ; xo) — tan™? (:1:2 ; xo) .

As stated earlier, if p;, p;, and p3 are three control features, then it can be

expected that ; = /p;vp, be the viewing angle from the actual camera’s position
v to p1 and pz, and B, = Lp,vps be the viewing angle from v to p, and p3. Given
the coordinates of the three control features and the viewing angles 8, and B, the

positién v can be .computed, as we will describe in the next section.

1. Finding Correct Position

The inputs to this task are the three positions p;,ps, and ps of the world’s

vertical edges, the computed viewing angles 8; and S, and the estimated pose g,
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P2

o\ g,

v

P3

Figure 91. Viewing angles from v to three control features in the world.

(Figure 92). The output is the (z,y) coordinates of the correct position v. To find

P 5
P3 — o

P37
bpr—=

py——

Qe =

Pose finding algorithm

Precise Pose

v

Figure 92. Finding precise position of the camera.

the correct position of v, we will use Figure 93 and the following steps:

1. Let Ey = pips; with orientation oy = ¥(py, p2), and Ey = pyps with orientation

oz = U(p2, p3)-

2. Compute the center ¢, of the first circle passing through p; and p, as follows:
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e

Figure 93. Geometrical relation between the correct position v and the two circles
passing through the three control features.

e find the middle point ¢; = (z,,,y,) = (2322, 232) of pyp;, where p; =
(z1,91) and py = (22,72).

p1p2
2 ta.n(ﬂl ) *

o the center is computed as follows:

e compute $; =

s . i
a1 = (x4 +s1cos(oq — 5),yq1 + sysin(ag — 5))

= (24, + s1sin(a1),yq — s1c08(a1)).

3. Compute the radius R; of the first circle:

_ P2
) sinf;

4. Similarly, the second circle’s center ¢, and radius R, is computed.

5. Given the two centers ¢; = (z1,y1) and ¢; = (22,92), and the two radii R; and
R,, the exact position v = (z,y) should satisfy the conditions

(z—z1)*+(y—w)* = R?, (VIL1)

92



and
(z = z2)" + (y — y2)* = R3.
From these two equations, we get

z? = 2z2, + xf +y2 — 2yy1 + yl2 = Rf,

and

g’ — 22y + 75 +y° — 2yys + y2 = R2.

By subtracting Equation VII.4 from Equation VII.3 we get
—2z(21 — 22) + 27 — 25 — 2yy1 + 2yye + 45 — 3 = R} — RS,

which yields

L _mtn n-w |, d-R BB

2 2(331 - :1:2) 2((131 —..’132) 2(161 — .’132)

= Ki+ Ky,

where

K = 1+ yi=y3— R+ R}

)=
2 2(z1 — 22)
and
_ Y1 —Y
e = 2z1 — z2)

(VIL2)

(VIL3)

(VIL4)

(VIL5)

(VIL6)
(VILT)

Solving for Equation VIL.3 and substituting for x in the equation, we obtain

(K1 + sz)z — 2(Ky + K)o + 23 + y° — 2yys +yi = B2,

or, equivalently,

K12 + 2K, Koy + K22y2 — 2K 21 — 2Koy + :cf + y2 - 2yy; + yf — Rf = 0.

NoteThis equation is in the form

Ay*+ By +C =0,
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where A = K7 +1, B =2(K1K; — Ko7y — y1), and C = K? — 2Kz, + z?+y? - R2.

By computing the constants K; and K, and using them with the other known
values of z,, y1, and Ry, we can substitute for A, B, and C in the two solutions of the
second order equation which are y = —B + @. One of the values of y should
be very close to that of the point p,, so the other value is taken. Using that value of

y in Equation VIL.7, z can be computed. Now the correct position is v = (z, y).

2. Finding Correct Orientation

After finding the correct position v = (z,y), the correct orientation, 6, is
computed as follows:

For each control feature p;, (1 < ¢ < 3), the orientation ¥(v,p;) is computed.
Next, the angle ¢; is computed using the focal length, z;-values for each corresponding
vertical line on the image plane, and o, the z-coordinate of the image plane’s center
(Figure 94). Then the difference 8; = ¥ (v, p;) — §; is computed. Finally, 8 is obtained
by averaging these values. The algorithm is given in Figure 95.

P Image plane

Figure 94. Geometry of finding camera orientation.

E. EXPERIMENTAL RESULTS

Using the model of the new environment of the autonomous robot Yamabico,
the algorithm was tested on some images taken by a CCD camera. We estimated the
position and orientation in which each image was taken. Several experiments were
performed to verify that the algorithm returns the correct pose. The difficult part

was specifying the focal length to obtain the correct model view that will be matched
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CorrectOrientation(f, v, p, ps, p3, o, 21, T2, T3)

begin

1. for (each p;,1 <1 <3)

2. U; = Orientation(v, p;)
3. § = tan~! (=%

4. 0, =0, — 6,

5. return § = Average(6,62,65)
end

Figure 95. Algorithm of computing the correct camera orientation 4.

with the actual image. In Figure 97, we show an example of correcting the estimated

pose in Figure 96.

Figure 96. Estimated pose 2=2040 cm, y= 120.0crﬁ, 6 = 0.0°.

The magnitude of the error for that position was 10.77 cm for z, 3.77 cm
for y and 1.97° for §. The execution time on a 20MHz SGI machine was about 4-
5 seconds which is about 20% of the execution time of the old pose determination

method. Thus, we believe that a significant improvement was achieved by using the
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Figure 97. Correct pose £=2050.77 cm, y= 116.23, § = 1.97°.

new efficient edge detection algorithm and the modeling method.
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VIII. IMPLEMENTATION PLATFORM:
YAMABICO-11

In this chapter, a brief description of the hardware and software system ar-
chitecture of the robot Yamabico-11 is given. The on-board image understanding
system is also described here. This is intended as background information about the

platform on which the research in this dissertation was directed.

A. YAMABICO HARDWARE SYSTEM

The autonomous mobile robot Yamabico-11 (Figure 98) is an experimental

robot used for indoor robotics research at the Naval Postgraduate School. The efforts

Figure 98. Autonomous mobile robot, Yamabico-11.

of a research team led by Professor Yutaka Kanayama have added many significant

contributions to that platform over several years. Many research activities have been
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involved in the project, including motion plaﬁning [Ref. 9, 10, 11], automated car-
tography [Ref. 33], sonar-data interpretation [Ref. 18, 19], and sonar-based obstacle
avoidance [Ref. 34]. Additional contributions have been made at the University of
Electro-Communications, the University of Tsukuba, Stanford University, and the
University of California at Santa Barbara [Ref. 76, 77].

For image understanding, several efforts constructed functions that can be
used for further image understanding tasks ( [Ref. 35, 36]). A vision system was
added to the robot, as described in [Ref. 38]. The Yamabico hardware system is
described in Table V. Some of the technical information in this table is based on

[Ref. 78]. The hardware architecture of Yamabico is illustrated in Figure 99.

Power Source Two 12-volt batteries

CPU IV-SPARC, 33MHz

RAM 16 MB DRAM

MIPS 24

MFLOPS 5

CPU Interface VMEDbus Interface

EPROM Two 64K x 16 EPROMs

Driving Wheels 2

Free Wheels Four casters (for balance)
Communication With Ethernet (10Base-T)

UNIX System

Sonar System Twelve 40KHz sonars (3 groups)

Sonar Beam Range 4 meters (approximately)

Sonar Coverage 360 degree _

Motors Two 35 watt DC motor with shaft encoders
Motor Control Dual Axis Controller

Vision System image board with CCD camera (B&W)
I/O Interface With Users | Macintosh PowerBook

Table V. Yamabico’ s main hardware specifications.

B. ON-BOARD VISION SYSTEM

In this section we give a brief description of the on-board vision system. The
installation of an image board and a CCD camera on the robot was an important

step in Yamabico’s devdopment.' That was the initial step in the on-board image
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Figure 99. Block diagram of Yamabico-11 hardware architecture.

understanding system. The efforts of J. Kisor [Ref. 38] in integration of image
hardware/ software became the groundwork for the future image understanding tasks.
The main references for this section were his thesis and the technical manuals of the

image board and the camera used.

1. IMS Image Board

The IMS (standard image manager) is a single VME board containing several
components such as image memory, acquisition module (AM), computational module
(CM) and display module (DM). These modules provide flexible camera and display

interfaces. Additionally, they provide local processing capabilities. The acquisition

module provides an interface between the camera and the IMS board. The display

module provides an interface with a display monitor [Ref. 79]. The image board is
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mapped to the addressing space of the VME bus as shown in Table VI. The IMS

Module Address
Image Memory Frames or Display Module | 0xfa000000
IMS registers 0xfc000600

Table VI. Mapping of image modules to the VME bus address space.

image memory stores digitized images at three frames; A0, A1, and B1. Each frame

1s 1024 pixels x 1024 lines, with an eight-bit per pixel.

2. CCD Camera

The image understanding system on Yamabico includes a Cohu 4110 CCD
camera from Cohu Inc [Ref. 80]. The Cohu 4110 is a digital output camera featuring
a 1/2 inch format CCD image sensor. The area of active imaging is 6.4mm x 4.8mm
and 739 x 484 pixels. Table VII shows the main characteristics of the Cohu camera.

For more information see [Ref. 80].

imager single CCD
Image Sensor Size 6.4mm x 4.8mm
Video Output digital with analog option
Resolution 739 x 484 pixels
Num. of bits/pixel . 8 bits
Gray Levels 256
Focal Length variable (depends on the lens used)

Table VII. Summary of Cohu CCD camera capabilities.

C. MML SOFTWARE

The Model-based Mobile-robot Language (MML) is a library of functions writ-
ten in the ANSI C language in the UNIX environment. This library is used as a basis
for all user programs and commands to the robot. It supports motion control func-
tions, sonar functions, I/O functions, image understanding functions, and others. The
last version developed for Yamabico is called MML-11. A new version (MML-12) for

motion control is currently under development. The image understanding portion of
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the software was integrated with MML-11 for experimental purposes [Ref. 38]. In
the future, it should be integrated with the new version MML-12.

When a;ﬁser writes a program and wants to execute it on Yamabico, the
program takes the form of a user file called user.c which includes some commands to
the robot that should be performed sequentially. After compiling the program, the
executable file is ready to be downloaded to the robot through an Ethernet connection.
After downloading the program, the robot becomes self-contained.

The function library is a set of user functions to provide the interface between
the user and the system. Before adding the image understanding functions, the user

functions were categorized into four modules [Ref. 11]:

e Operating System Module,
e Motion Planning Module,
e Motion Control Module,

e Sonar Control Module.

An important feature in the software system of Yamabico is its interrupt han-
dling. The motion control has the highest priority. The interrupt occurs every 10
msec. The sonar control can issue an interrupt request every 50 msec in the case of
the existence of sonar returns. The user programs have the lowest priority, but it

gives the system all the requested user commands through a sequential buffer.

D. IMAGE UNDERSTANDING SOFTWARE

The image understanding software was added first to the robot as a part of
the work addressed in [Ref. 38]. Some low-level image functions were included with
the system through that work. In the following, we list those main low-level image

functions:

1. IMS initialization : for initializing the image board.

2. Display Initialization : for setting the monitor and display module registers.
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3. Acquisition Initialization: for setting registers that control the camera or ac-
quisition module interface.

4. Image Transfer (setInputPath, setFrameAcquire, acqEnable, and interlacePage2).

1. Basic User-Level Image Functions

Adding an image understanding capability to the robot requires the addition
of an image function library. It is intended to hide the low-level functions from the
user, who may then issue user-level commands in place of a sequence of low-level
- functions. These low-level functions were originally designed by John Kisor [Ref. 38].
Specifically, the functions acqEnable and interlacePage2 can be categorized in the
user-level ones. All the user-level commands are contained in the Appendix: ON-
BOARD IMPLEMENTATION, Part 4. The added user-level commands are shown
in Table VIIL

Function Purpose
initImgSys() Initialization of the image frames
setCameral() set the input path from the camera to the 3 image frames
startGrab() direct the image board to start grabbing

continuous video image from the camera to image frames
stopGrab() direct the image board to stop grabbing the video image
snap() take a snapshot of a still image into image frames
clearFrame(frame) || set all pixel data in a specified frame to 0
clearFrames() set all pixel data in all frames to 0

Table VIII. Summary of basic user image functions.
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IX. CONCLUSIONS AND DIRECTIONS
FOR FUTURE WORK

A. CONCLUSIONS

This research has solved the efficiency problem for the model-based image
understanding tasks of autonomous vehicles. A new efficient straight-edge detection
method using direction-controlled edge tracking and random hitting algorithms was
invented for the purpose of reducing the computational time. This method avoids
the exhaustive pixel processing executed in classical edge detection methods. We
proposed using a pseudo-random number scheme to find a starting pixel from which
an edge tracking for a linear sequence of pixels is performed. A robust least-squares
fitting algorithm was used to obtain the geometric features for the line segment that
best fits the pixel sequence including the endpoints. The directional information
of the line segment was used to control the edge tracking task. During this edge
detection method, duplicate tracking of the same edge was avoided by the closeness
test.

In real experiments, we were able to detect 20 major edges in a test image
with a very small number of pixels processed (4.36 % of 313,956 total pixels in the
image). The results show that this algorithm is useful and efficient for numerous
image understanding applications and autonomous robot visual navigation.

An effective method for modeling the world environment of an indoor au-
tonomous vehicle is presenﬁed to give the main features of the WOﬂd in a simple and
efficient manner. The two methods were used to improve the efficiency of the pose
determination algorithm. The execution time was only about 20-25% of that with a
3D model and exhaustive scanning method for edge detection.

These methods were first successfully implemented on a graphics workstation.
Second, the code was partially ported to the autonomous mobile robot Yamabico-11.

A user-level image function library was added to the current MML software system,
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so that a user can easily program high-level on-board vision algorithms.

B.

FUTURE WORK

In the following points, some suggestions for future work:

Investigating different values to be used for ¢ in the pseudo-random hitting
method that satisfies the uniform-distribution property, and finding a mathe-
matical model that computes the best scheme for the pseudo-random number
generator, based on the image width and height.

Investigating the use of the new edge detection method with multi-resolution
images, as those dealt with in [Ref. 81].

Implementing the 21D model and pose determination in real time for self
localization.

Including the presented direction-controlled edge-tracking method with an ob-
stacle avoidance method may result in a robust, intelligent behavior of the
robot.

Investigating sonar/vision fusion to verify the localization correction.

There were some minor problems in edge detection in some indoor images due
to the reflection and lighting conditions. Solving this problem will improve
this edge-tracking method.

Complete implementation of the image-understanding function library.
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APPENDIX A. ON-BOARD
IMPLEMENTATION

The new edge detection algorithm was implemented on the autonomous mo-
bile robot Yamabico-11. We present the data structures and the program design as

implemented on the robot Yamabico. The program design is described in Figure 100.

user program

' ; ' !

InitImgSys readlmage defcctEdges stopGrab logLines

Figure 100. User program description.

In this user program, a call to the function initImgSys performs initialization
of the image frames A0, Al, Bl to zero. The function readImage sets the camera
signals to be the input to the image board, then starts grabbing an image into frames
A0, Al, and Bl. After setting the appropriate memory locatioﬁ for the acquired
image, a call to the function detectEdges() is applied on the image to perform the
edge detection task. The strucfure of readImage() function is described in Figure 101,

while the structure of detectEdges is shown in Figure 102.

readImage

setCamera startGrab cycleLEDS acqEnable

Figure 101. Structure of the readlmage() function.

An example of a user program is given below, followed by the data structures

and the edge detection functions.
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trackEdges

pseudoRandom

notClose

trackEdge

addSegment

Figure 102. Edge detection program description.

1. AN EXAMPLE OF USER PROGRAM

/******************************************************

FILENAME . user.c

DESCRIPTION: read image and detect edges using

Direction Controlled Edge Tracking and
Random Hitting

Author : Khaled Morsy

*******************************************************/

#include "user.h"

#include "displayCtrl.h"

#include "acquisitionCtrl.h"

#include "imsControl.h"

#include "imgLib.h"

#include "trackEdge.h"

/*¥*x Local Prototypes *¥x/

int
user({

initImgSys();
readImage();
detectEdges();
stopGrab() ;
logLines();
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2. DATA STRUCTURES DEFINITIONS

/*******************************************************

FILE NAME

: imgDefs.h

DESCRIPTION: Data structures Definitions for image
understanding programs, specifically for the
new edge detection algorithm.

AUTHOR

: Khaled Morsy

/33K ok ke sk o ke sk skak sk sk sk sk sk sk s ok ok ok e sk s e ok skok sk ke sk ok ok sk sk sk sk sk ok sk sk ok ok sk ok sk sk ok f

typedef struct
{
POINT p;
double gm;
double phi;
} PIXEL;

typedef struct
{ PIXEL pi;
PIXEL p2;
PIXEL p3; .
} GROUP;

typedef struct
{

/* Least Squares

double m0O0;
double mi0;
double mO01;
double mii;
double m20;
~double m02;
double mux ;
double muy ;
double alpha;

double r;

POINT qi;

POINT q2;
} EDGE;

Fit moments*/

/%
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

/*

Number of pixels */

Sum x */

Sum y */

Sum x*y */

Sum x*x */

Sum y*y */

x-value of centroid */

y-value of centroid */

calculated normal orientation

of IMG LINE */

distance from origin to the line
segment */

last pixel of edge sequence in psi+
direction */ v

last pixel of edge sequence in psi-
direction */
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typedef struct
{ double n; /* same as m00
double alpha;
double r;
POINT el;
POINT e2;
} IMG_LINE;

*/
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3. FUNCTIONS OF THE DIRECTION-CONTROLLED
EDGE TRACKING WITH RANDOM HITTING PRO-
GRAM

[ 3k ke ks sk ok skok kskokskok sk ok kesk ek ok ok sk ks sk ok sksk sk sk ok sk ok ko ok Kok o ok ok sk ok ok sk ok
FILE NAME : trackEdge.h

PURPOSE : Edge detection functions
DATE : Apr. 9, 1997

Notes : Yamabico Version.

AUTHOR : KHALED MORSY

******************************************************/

#define THRESHOLD 5000
#include "imgDefs.h"

/[ *x% Global Variables */

double phi0 , g0, phil; /* p0’s gradient direction and
magnitude */

int temp = 1;
int H ='476;
int W = 732;

[k dkosk ok kK okokkokkokkokkokkdokkkokkkkk PROTOTYPE sk kokskkkskokoskskokoksk /
long Pseudorandom(long,long,long,long) ;

POINT ConvertTo2D(long);

int NotOnImageBoundary(POINT) ;

int significant(POINT);

void ComputeGradient(PDINT, double *, double * );
double SumSqrs(double , double);

POINT FindInitialPixel (POINT);

void TrackEdge(POINT,EDGE ,IMG_LINE *);

void InitializeSequence(POINT , EDGE *);

double normalize2(double) ;

void TrackPixels(POINT,double,EDGE *);

POINT SelectNextPixel (POINT,double);

GROUP Neighbors(POINT , double);

PIXEL LargestGradientPixel (GROUP);

int Consistent(double ,double );

void DeletePixel (PIXEL, GROUP*);

void LeastSquaresFitting(EDGE *,POINT);

void ComputeSegmentData(EDGE * , IMG_LINE *);
double normalize(double) ;
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void InitLogLines(char*, int);

[ KoKk sk sk sk o sk ok sk e e sk ok ok ke ok ok sk sk sk sksk sk ok ok o sk SRk 3k ok ok koK s ok sk ke sk ok sk sk ok ok okok
Function : PseudoRandom(long r0, long ¢ , long M)
Purpose : Generate a Pseudo Random Number
AUTHOR : Khaled Morsy
sk Kok K o ko ok ok ok ok ok ok ok ok oK ok oK Kok oK ok ok ok ok o ek ok ok ok sk o o ok ok sk Kok sk ok sk ok ok koK ok f
long PseudoRandom(long r0, long a, long c, long M)
{

return (a*r0 + c) % M;

¥

[ R K ok K o ok K ok KR K KoK Kok KK Rk KoK KKK KKk KKK ok kK ok

Function : ConvertTo2D(long)

Purpose : converts a Pseudo Random Number into image
coordinates (x,y)

AUTHOR  : Khaled Morsy
sk ok sk sk o s s o kR sk sk ok sk skt ke sk ok sk ik sk seksk sk ok sksk ok ok sk ok ok o ok sk ok sk ok ok ok

POINT ConvertTo2D(long prn)

{
POINT p;
p.X=prn % W ;
p.Y=prn/ W ;
return p;

}

[ R kstsksksk sk sk skskok sk ok ko ok sk ke sk ok ok ok sk ok stk sk sk sk sk sk ksl sk ok ok sk ok sk sk
Function : NotOnImageBoundary(POINT)
Purpose : true if the point NOT on the image boundary

AUTHOR  : Khaled Morsy
sk sk ok e e ke ok ok e ok ok sk ok sk sk sk sk sk ok ok ok ks ok sk sk ok ok sk sksk sk ok sk sk ok ok ok sk sk sk ok ko ok /

int NotOnImageBoundary(POINT p)

{
if((p.X > 2 && p.X < W-2) && (p.Y > 2 && p.Y < H-2))
return 1 ;
else
return 0 ;

by

[ Kk sk s ks sk ok o ok ok s sk s ks ek sk sk sk sk sk ok ok ek sk s ok sk ok ek ok o ok ok K ok ok
Function : Significant(POINT p0)
Purpose : returns true if p0 is a significant pixel
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and computes its gradient direction
AUTHOR  : Khaled Morsy Jan 97
ok Kok sk Kk ook Ko Kok ko skokok sk okesk s skokok ook sk skok ok ok Kok Kk ok ok ok ook /

int significant(POINT p0 )

{
double gx,gy ;
double g;
if (NotOnImageBoundary(p0))
{
ComputeGradient (p0,&gx,&gy) ;
g0 = SumSqrs(gx,gy);
if (g0 > THRESHOLD)
{ phi0 = atan2(gy,gx);
return 1 ;
}
else return 0;
}
return 0 ;
ks

/KoK ok sk ok sk ok skok sk o s ok ok sk sk skok sk skok ok sk sk ok ok sk o ok ok skok sk sk ok ok stk sk sk sk skkok sk ke sk sk ok
Function : ComputeGradient(POINT p0,gx,gy)

Purpose : compute gx and gy (horizontal and vertical
gradients) by SOBEL OPERATOR
AUTHOR : Khaled Morsy Jan 97

/*****************************************************/

void ComputeGradient (POINT p, double *gx , double *gy)
{ :

/* this deals with frame B1 x/
int x,y,gxi,gyi;

BYTE ul,1,d1l,u,d,ur,r,dr;
unsigned long p0,b = 0xfa000000;;

x=(int) p.X;
y=(int) p.Y;
PO =Db + y * 1024 + x ;

/* the direction of pixels on-board are different from
SGI machine, it is left to right top to bottom
a pixel and the one on the next line differs by
1K */
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1 = x(BYTE*) (p0-1); /* left pixel */
r = *(BYTEx) (p0+1); /* right pixel */
u = *(BYTEx) (p0-1024); /+* upper pixel */

ul = *(BYTE#) (p0-1025); /* upper-left */
ur = *(BYTEx*) (p0-1023); /* upper-right */
d = *(BYTE*) (p0+1024); /* down pixel */
dl = *(BYTE*) (p0+1023); /* down-left */
dr = *(BYTE*) (p0+1025); /* down-right */

gxi = -ul-l-dl+ur+r+dr;
gyl = -dl-d-dr+ul+u+r;
*gx = (double) gxi ;
*gy = (double) gyi ;

[ 3k ke ke ok sk sk sk sk ok sk ok sk sk sk sk sk sk ke sk ok sk skok sk stk ke skl skok sk sk sk sk sk ok sk sk o ok ok
Function : SumSqrs(a,b)

Purpose : simply compute a*a + b*b

AUTHOR : Khaled Morsy

sk sk s sk ke sk sk sk ek ok sk ok sk ok ok ook ok e okkokak ok sk ok ok ook /

double SumSqrs(double a, double b)
(

return a*a + b*b ;

by

[ FFFKA R A KRR AR KRR ok ok kR kRl Rkl ok skok ok
FUNCTION : TrackEdge(PIXEL p0 , EDGE *Q ,IMG_LINE *L)
PURPOSE : track pixel sequence in two directions

AUTHOR  : Khaled Morsy
sk sk o o o ok ok ok ok ok ok ok ok ok ok sk sk sk s sk sk sk sk sk skt sk skok sk sk sk skt ks sk ok sk sk sk ok /

void TrackEdge(POINT pO , EDGE Q ,IMG_LINE *L)

{
InitializeSequence(p0, &Q);

TrackPixels(p0, PI/2, &Q);

TrackPixels(p0, -PI/2, &Q);
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{

ComputeSegmentData(&Q,L);

¥

[ ek ek ok sk sk sk ok ok sk o o ok sk ok s sk ok ok o Kok ok K sk e ok Kok ok ok ok ok ok K ok o K ok ok 3K K KoK ok sk ok K
FUNCTION : InitializeSequence(POINT p, EDGE *Q)

PURPOSE : Imnitailize Least-Squares fitting parameters
AUTHOR : Khaled Morsy

sk o o ok ok koK ok ok ok ok sk sk ok ok stk sk okl sk ke skok ok ok sk ok sk sk ok sk ok sk sk sk ok sk sk sk sk sk ok sk sk ok ok sk ok /
void InitializeSequence(POINT p, EDGE *Q)

Q->m00 =1;
Q->mi0 = p.X;
Q->m01 =p.Y;
Q->m20 = p.X * p.X ;
Q->m02 =p.Y *x p.Y ;
Q->mi1 = p.X * p.Y ;
Q->alpha = normalize2(phi0) ;
Q->r = 0.0 ;
Q->q1.X p-X ;
Q->q1.Y =p.Y ;
Q->q2.X p-X;
Q->g2.Y =p.Y ;

b

[ sk sk sk sk ok sk stk sk sk o sk sk ke stk ke stk ok ok sk sk sk sk ek ook sk ok sk sk sk ok sk sk sk ok ok sk ok ok
FUNCTION : normalize2()
PURPOSE : return the normalized value of orientation
in range -PI/2 , PI/2
AUTHOR : Khaled Morsy
stk sk sk ok sk sk ok sk sk o ok ok sk o skok sk s ok kel sk ks sk ok ok ok sk sk ek sk ok sekok sk ok ok ok /

double normalize2(double o)

{

while ( o > PI/2) o =0 - PI ;
while ( 0 < - PI/2 ) o = o + PI ;
return(o);

b

[ ek sk ke ok sk ok sk ok ok ok ok ko o Kok ok ok ok sk ok ook sk sk ook sk ok ok K ok ok K ok ok o ok
FUNCTION : TrackPixels(POINT p0O, double beta, EDGE *Q)
PURPOSE : track only one side from pO
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AUTHOR  : Khaled Morsy
Hakokok ok o o ok Kok ok ok ok ok ok sk o ok sk sk ok kb ok sk ok ki sk ok sk sk ok 3k Kok ok sk ok ok sk sk skok sk ok f

void TrackPixels(POINT p0O, double beta, EDGE *Q)
{
POINT pi1,p2;
double psi;
pl=p0;
phil=phiO;
while(1)
{
psi = Q->alpha + beta ;
p2 = SelectNextPixel(pl,psi);
if(p2.X == 0.0 &% p2.Y == 0.0)

{
if(beta == PI/2)
{ Q->q1.X = p1.X ;
Q->q1.Y = p1.Y ;}
else
{ Q->92.X = p1.X ;
Q->g2.Y = p1.Y ;
}
break;
}

LeastSquaresFitting(Q,p2);
pl=p2 ;

[ FK Rk ok skok ko sk sk ok skok sk skok sk skok sk ks ek sk sk sk ek sk ok ok sk ok 3ok o Kok o ok ok ook ok
FUNCTION : SelectNextPixel(POINT pi1, double psi)
PURPOSE : select one pixel out of 3 neighbors

AUTHOR  : Khaled Morsy
[k koke sk kst s ok stk skoskok sk skl kokok sk ok ki skl s s sk ok ok sk ok sk ok kKoK ok Kok ok ok kkok /-

POINT SelectNextPixel(POINT pil,double psi)

{
PIXEL pxl2;
double phi2;
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int num_pixels_in_group = 3;
GROUP S;
POINT p2;
S = Neighbors(pl, psi);
while(num_pixels_in_group > 0)
{
px12 = LargestGradientPixel(S);

if(px12.p.X != 0.0 && pxl12.p.Y !'= 0.0 )
{ phi2 = px12.phi;
if (NotOnImageBoundary(px12.p) && Consistent(psi,phi2))
return pxl2.p;
}
DeletePixel(px12,&S); /* make gm=0 of corresp. pixel to
pxl2 in S */
num_pixels_in_group-- ;
}
p2.X = 0.0;
p2.Y = 0.0;
return(p2);

U}

¥

[/ 3Kk ke ook ok stk sk ok sk ok sk sk sk skok sk sk sk ok sk ek sk s sk sk sk sk ok ok sk kK sk o ok sk sk ok ok skok

FUNCTION : Neighbors(POINT p, double psi)

PURPOSE : find neighbors of a given point in the psi
direction.

AUTHOR : Khaled Morsy
/3K kK sk sk sk ok sk sk s ok sk sk s ke skskok e ks sk ok sk sk sk s sk ke sk sk ok o ok ok sk ok o sk ok K sk ok ok

GROUP Neighbors(POINT p, double psi)

{
GROUP S;
POINT ppl,pp2,pp3;
double gx,gy,gm;

if(psi < - PI)
psi = -PI ;

if(psi > -PI/8 && psi <= PI/8) /* range DO */
{ .
ppl.X=p.X +1 ; ppl.Y = p.Y -1;
pp2.X =p.X + 1 ; pp2.Y = p.Y ;
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pp3.X = p.X + 1 ; pp3.Y = p.Y +1 ;

} .
else if(psi > PI/8 && psi <= 3*PI/8) /* range D1 */
{ .
ppl.X =p.X + 1 ; ppl.Y = p.Y ;
pp2.X =p.X + 1 ; pp2.Y = p.Y + 1 ;
pp3.X =p.X ; pp3.Y=p.Y +1 ;
by
else if(psi > 3%PI/8 && psi <= 5%PI/8) /* range D2 */
{
ppl.X=p.X +1 ; ppl.Y =p.Y + 1 ;
pp2.X = p.X ; pp2.Y=p.Y + 1 ;
pp3.X =p.X -1 ; pp3.Y=p.Y + 1 ;

¥

else if(psi > 5*%PI/8 && psi <= 7*PI/8) /* range D3 */
{

i

ppl.X =p.X ; ppl.Y=p.Y + 1 ;
pp2.X = p.X-1 ; pp2.Y=p.Y + 1 ;
pp3.X = p.X -1 ; pp3.Y =p.Y ;

¥

else if((psi > 7*PI/8 && psi <= PI) ||
(psi >= -PI && psi <= -T*PI/8)) /* D& x/
{

ppl.X = p.X-1
pp2.X = p.X-1 ; pp2.Y

pPl.Y =p.Y + 1 ;
p.Y

we

pp3. X =p.X -1 ; pp3.Y=p.Y -1 ;
¥
else if(psi > -7*PI/8 && psi <= -5%PI/8) /* range D5 */
{
ppl.X=p.X -1 ; ppl.Y =p.Y ;
pp2.X =p.X -1 ; pp2.Y = p.Y -1 ;
pp3. X =p.X ; pp3.Y=p.Y -1 ;
S}
else if(psi > -5%PI/8 && psi <= -3*PI/8) /* range D6 */
{

ppl.X=p.X -1 ; ppl.Y = p-Y-1
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pp2.X = p.X ; pp2.Y=p.Y -1 ;
pp3.X =p.X +1; pp3.Y=p.Y -1 ;
}
else if(psi > -3%PI/8 && psi <= -PI/8) /* range D7 */
{
ppl.X = p.X ; ppl.Y = p.Y-1
pp2.X =p.X + 1 ; pp2.Y = p.Y -1 ;
pp3.X =p.X + 1 ; pp3.Y = p.Y ;
}
S.pl.p.X = ppl1.X; S.pl.p.Y = ppl.Y ;
S.p2.p.X = pp2.X; S.p2.p.Y = pp2.Y ;
S.p3.p.X = pp3.X; S.p3.p.Y = pp3.Y ;

{s.pt.

{s.p2.

ComputeGradient (ppl,&gx,&gy) ;
gm = SumSqrs(gx,gy);
if(gm > THRESHOLD)
{S.pi.gm = gn ;
S.pl.phi = atan2(gy,gx);
¥
else
gm = 0.0;
S.pl.phi = 0.0;
¥

ComputeGradient(pp2,&gx,&gy) ;
gn = SumSqrs(gx,gy);
if (gm > THRESHOLD)
{S.p2.gm = gm ;
S.p2.phi = atan2(gy,gx);
} :
else
gmn = 0.0;
S.p2.phi = 0.0;
¥

ComputeGradient (pp3,&gx,&gy) ;
gm = SumSqrs(gx,gy);
if(gm > THRESHOLD)

{S.p3.gm = gm ;

S.p3.phi = atan2(gy,gx);
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by
else
{S.p3.gm = 0.0;
S.p3.phi = 0.0;
b

return S;

}

[ KRRk Aok Ak Rk ok ok oksk kokskok ok oK sk ko ok ko sk ssk ke sk Kok K ok oK
FUNCTION : LargestGradient(GROUP *S)
PURPOSE : select one pixel with largest gradient

from group S of pixels '
AUTHOR  : Khaled Morsy
[k kKRR ok R ok ok ok sk skkkok ok Fo R Kk bk kkokkok ok

PIXEL LargestGradientPixel (GROUP S)
{

PIXEL pxl;

double gmi,gm2,gm3;

gml = S.pl.gm ;

gm2 S.p2.gm ;

gn3 = S.p3.gm ;

if( gm! > THRESHOLD &&(gmi > gm2 && gml > gm3) )
{
if(gm1 - gm2 > (.1 * gm2))
return S.pi;
else
return S.p2 ;

else if(gm2 > THRESHOLD &&(gm2 >= gml && gm2 >= gm3))
return S.p2;

else if(gm3 > THRESHOLD &% (gm3 > gml && gm3 > gm2))

{
if(gm3 - gm2 > (.1 * gm2))
return S.p3;
else
return S.p2 ;

118



else
t
pxl.p.X = 0.0 ;
pxl.p.Y = 0.0
pxl.gm = 0.0 ;
pxl.phi = 0.0 ;
return pxl ;

.
2

k)
by

/K sk sk sk sk sk s sk ok sk sk sk o ok ok ok sk ok sk ok o sk o ok sk sk o ok ko o ek sk ok sk sk o ok ok
FUNCTION : Consistent(double phi ,double phi)
PURPOSE : check consistency between two directions

AUTHOR : Khaled Morsy
[ FFk Kok ok skok sk ok ok sk ok dokokokokosk ok skokok ok ok ok sk ok sk sk ok ok ok ok ok sk ok kok /

int Consistent(double psi ,double phi)

{
double epsilon = 20 * PI / 180;
if(fabs(normalize2(phi-psi-PI/2)) < epsilomn )
return(i) ; '
else
return(0);
}

% F kR KRk sk kok ok ok skok sk kol sk skok ok ok ok ok ok sk ok s Kok sk ok sk ok ek sk ok

FUNCTION : Delete(PIXEL pxl, GROUP S)

PURPOSE : make grad. magnitude of pxl zero, so it will
not be used next time

AUTHOR : Khaled Morsy
kKoK Kok K ko Kok ok okok sk deok ok sk skok e kok ok sk koK Kok ok ok Kk sk ok ok Kok ok ok ok /

void DeletePixel (PIXEL pxl , GROUP *S)
{

if( pxl.p.X == S->p1.p.X && pxl.p.Y == S->pl.p.Y)
S->pl.gm = 0.0 ;
else if(pxl.p.X == $->p2.p.X && pxl.p.Y == S->p2.p.Y)
S->p2.gm = 0.0 ;
else
S->p3.gm = 0.0 ;
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[k ok ok sk sk sk s sk sk ok ok ok ok ok sk ok sk ks sk ok sk Rk Rk R
FUNCTION : LeastSquaresFitting(EDGE Q, POINT p)

PURPOSE : Compute The Least-Squares fitting for pixel
sequence {§
AUTHOR : Khaled Morsy

oKk ok KoK ok KRR KA AR K KKK ok A KK koK ok oK Sk KK Kok K
void LeastSquaresFitting(EDGE *Q, POINT p)

{
double M20, Mi1, MO2;

++Q->m00 ;

Q->m10 += p.X;

Q->m01 += p.Y;

Q->m20 += p.X * p.X ;
Q->m02 += p.Y * p.Y ;
Q->mil += p.X * p.Y ;

M20 = Q->m20 - (Q->m10)*(Q->m10)/Q->m00 ;
Mi1 = Q->miil - (Q->m10)*(Q->m01)/Q->m00 ;
MO2 = Q->m02 - (Q->m01)*(Q->m01)/Q->m00 ;

Q->alpha = 0.5 * atan2(-2%M11 , M02-M20);
}

[ okoksk ok sk ks ok ok o ok sk ok K K sk ok sk sk o sk o sk o sk ok sk sk ok sk Kok ok sk K sk o
FUNCTION, : ComputeSegmentData(EDGE *Q, IMG_LINE *L)
PURPOSE : construct Line Segment data struct.
AUTHOR : Khaled Morsy
[ Rkoksk sk sk ok sk ok ook ok sk ok ko K sk ok sk ok ok sk sk ok kK sk ok sk o KKk K ok ok ok o
void ComputeSegmentData(EDGE *Q ,IMG_LINE *L )
{
double delta;
L->n = Q->m00 ;
L->alpha = Q->alpha ;
L->r = Q->m10/Q->m00 * cos(Q->alpha) +
Q->m01/Q->m00 * sin(Q->alpha) ;
delta = Q->ql1.X * cos(Q->alpha) +
Q->q1.Y * sin(Q->alpha) - L->r ;
L->e1.X = Q->q1.X - delta * cos(Q->alpha);
L->el.Y = Q->q1.Y - delta * sin(Q->alpha);
delta = Q->q2.X * cos(Q->alpha) +
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Q->92.Y * sin(Q->alpha) - L->T ;
L->e2.X = Q->q2.X - delta * cos(Q->alpha);
L->e2.Y = Q->q2.Y - delta * sin(Q->alpha);

}

[ Rk ok skok s ko ok s kol ok sk ok sk sk ks ko sk ok sk ok ok ok sk ok s ok ok o KoK ok R oKk ok ok

FUNCTION : AddSegment(LS, L, i)

PURPOSE : add one segment to the array

AUTHOR  : Khaled Morsy '

ok kb ko ok sk ok s ok ok s ol ok sk ok ok sk kol sk ko sk ok s sk sk ok sk s skok sk ok ok ok ok ok /

void AddSegment(LS, L, i) '
IMG_LINE LS[]; IMG_LINE L;int i;

{
LS{i]l.n = L.n;
LS[i].alpha = L.alpha;
Ls{il.r = L.r ;
LS[i].el = L.el ;
LS[i].e2 = L.e2 ;
}

/) 3k sk ok sk sk ok s sk sk ok e ke sk sk ok ok stk ook sk ok ok s ok ok sk s sk ok sk s e ok 3k Kok sk koK oK
FUNCTION : NotClose(p,L,index)

PURPOSE : Closeness Test

AUTHOR : Khaled Morsy

stk sk sk kR sk ook K koK ok ok sk ok ok ok sk sk ok sk sk ok ook ok sk ok sk ksl ok ok ok ok ok /
int NotClose(p,L,index)

POINT p ; IMG_LINE L[] ; int index ;

{

double dist, line_alpha ;

int i=0;

double px = p.X ;

double py = p.Y ; ‘

double 1x1,1y1,1x2,1y2,1ltheta, dx,dy;

int temp =0 ;

double xstar , ystar , xestar;

double xtemp,ytemp , A,B;

while(i < index)

{

1x1i= L[i].e1.X ; lyi1=L[i].el.Y ;
1x2=L[i].e2.X ; 1y2 = L[i].e2.Y ;
if (1x1<=1x2 && 1yl <= 1ly2)
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{

dx = 1x2-1x1;
dy = 1ly2 - 1yi;
3
1f(1x2 <= 1x1 && 1ly2 <= 1ly1)
{
- odx = 1x1 - 1x2 ;
dy = 1yl - 1y2 ;
xtemp = 1x1 ;
ytemp = 1yl ;
1x1 = 1x2;
1yl = 1y2 ;
1x2 = xtemp ;
ly2 = ytemp ;
3
if (1x2 <= 1x1 && 1yl <= 1y2)
{
dx = 1x2-1x1 ;
dy = ly2-1lyi;
¥ :
if (1x1 <= 1x2 && 1y2 <= 1lyl)
{
dx = 1x1 - 1x2 ;
dy = 1yl - 1ly2 ;
xtemp = 1x1 ;
ytemp = 1yl ;
1x1 = 1x2 ;
lyl = 1y2 ;
1x2 = xtemp ;
1y2 = ytemp ;
b
ltheta = atan2(dy,dx) ;
A = cos(ltheta) ;
B = sin(ltheta) ;

- xstar = (px-1x1)* A + (py-lyl) * B;
.ystar = -(px-1x1)* B + (py-lyl) * A ;

xestar = (1x2-1x1)* A + (ly2-1lyl) * B;

if(xstar < 0 )
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dist = sqrt((px-1x1) * (px-1x1) + (py-lyl) *(py-lyl)) ;
else {if(xstar >= 0 && xstar <= xestar)

dist = fabs(ystar) ;
else
dist = sqrt((px-1x2) * (px-1x2) + (py-ly2) *(py-1ly2)) ;

¥
if (fabs(dist) < 7) /* use 7 for delta */
return O ;
else
i++
}
return 1;

¥

[ ekt ok ke sk sk sk e ek ok s sk skt e sk sk ok s ek ok sk ok sk skl seskok sk skok skok kb ok sk sk sk skeokokskok

FUNCTION :GetNumLines()
sk sk s o sk sk ok ok s ok sk ok sk s e ks skok sk sk sk sk sk ok sk sk s sk ok sk ok sk sk sk sk sk sk sk ok sk sk sk skok sk ok

int GetNumLines()
{
int kk ;
printf(”\n ENTER NUM. OF LINES :");
scanf ("%d",&kk) ;
return kk ;

¥

[ sk ok sk ok sk ok sk ok ok stk sk ook o ko Kk ok skok Sk sk ok ok ook sk ok o skok ok ok o Kk ok ok ok o ok
FUNCTION : normalize()

PURPOSE : return the normalized value of orientation
sk e s sk ke sk sk sk sk ok ot ok sk e sk ok sk ke sk ke ok sk ke sk ke ok sk sk e sk ok ek sk ok ok sk sk sk ek sk Kok sk s sk sk ok k skskok f

double normalize(double o)

{
double d = o;

d= o - 2 * PI *(ceil((o+PI)/(2*%PI))-1.0);
return(d);
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/*********************************/

int sum(int a, int b)
{
return a+b ;

3

[ 3F KAk ok sk ok Kok ok koK ok Kok ok ok ok ks okoksk sk sk sk sk ok skok ok ok sk ok ok Kok ok ok ok /
/* FUNCTION : detectEdges()
/* AUTHOR  : KHALED MORSY
/* PURPOSE : main function for detecting edges by tracking and
/* random hitting
[ 3FH ok Rk sk sk ok KKk Kok skok ok ok ok ko ok kokok sk kol ok sk ok sk skokok ok ok sk ok Kok ok ok Kok kok k
void detectEdges()
{

IMG_LINE L, LS[20];

EDGE Q;

int yy, hh ;

int i=0;

long r0,c;

int a =1;

int j = 227; /* best for 732 by 476 image size */

int k = 317;

int num_hits = 0;

long M,prn;

POINT pO;

double pOx,pOy;

int K;
prn=0;

c=]j*732+k;

M=732%476;

K= GetNumLines();

while (i<K)

{

prn = PseudoRandom(prn,a,c,M);
. p0 =.ConvertTo2D(prn) ;
if (significant (p0))

{
if (NotClose(p0,LS,1i))
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TrackEdge(p0,Q,&L) ;
if (L.n > 50)
{

AddSegment (LS,L,1);
printf ("\nline # %d :%f %f %f %£",
i, LS[i].e1.X , LS[il.el.Y, LS[il.e2.X,
LS[i].e2.Y) ;

¥
InitLogLines(NULL,0);
LogLines(LS,K);

}

/*******************************************************/
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4. IMAGE UNDERSTANDING LIBRARY FUNCTIONS

/335K ke ke ke ok s ok ok ok stk o ks sk ok sk ok ok stk s ok sk sk sk sk o ok sk o ok ok sk sk sk o sk sk ok ke sk sk sk s s s o ok ok ko ok sk o ok
FILE NAME : imgLib.h

By : KHALED MORSY
Last Update: March 17
Purpose : set of functions required by Yamabico IU system

collected from low-level functions (John Kisor)
to provide easier user-level interface with the system
sk ok ok ok ko ook ok sk sk sk okok sk kel ks ofok ok ook ok K skok ok sk Kk ok ok ok ok sk sk sk ok sk ok ok /

YAMAIMAGE* blImage;

¥Rk Rk ko ook sk ok sk otk sk Kok Kok Rk koK oK ok ok ko sk sk sk ok ok ook ok /
/* Function : copyImageToMemory(IMSPage frameNumber)

Purpose : Copies an image frame to 2-d array for edge detection
and further IU algorithms.
Authors : John Kisor, Khaled Morsy and L. Remias

**********-*********************************************************/

void copyImageToMemory(IMSPage frameNumber)

{

unsigned long pagellndex = 0xfa000000; /* First empty line for pg2 pixels */
unsigned long page2Index = 0xfa07a400; /* First 1K of pixels on page 2%/
unsigned long pagelSource = 0xfa000000;

unsigned long page2Source = 0xfa07a400;

int i,5;

int xSize = 732;
int ySize = 476;

]

(YAMAIMAGE*)malloc(sizeof (YAMAIMAGE)) ;

bllImage

xSize;
ySize;

blImage->xSize
blImage->ySize

for(i=0; i<476; i+=2)

{
for (j=0; j<732; j++) /%732 bytes
{
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biImage->image[j][i] = *(BYTE*)pagelSource;
biImage->image[j] [i+1]= *(BYTE*)page2Source;

pagelSource++;

page2Source++; :
if(j==1&& i==0) /* for test only */
printf("\n %d4", bilImage->image[jl[i]);

¥

pagellndex += 0x400; /* 1K inc---new row */
pagelSource = pagellndex;

page2Index += 0x400;

page2Source = page2lndex;

}
}
[ sk ks sk o sk sk koK sk o Kok sk ok ok sk sk ok sk ok ok ok sk ok sk ok ok ok ok ok sk ok ok Kok Kok ok Kok Kok Kk K/
/* Function : initImgSys(void) */
/* Purpose : initalize image grabbing system */
/* Author : Khaled Morsy March 97 : */

[ F R Rk sk sk sk ks sk ok ok ks ok ok ok ko sk ok ok sk ok s o sk kK sk koK Rk koK ok kKK o
void initImgSys(void)

{

DisablelInterrupts();

setInputPath(A1l, CONSTANT);

setInputPath(B1, CONSTANT);

setInputPath (A0, CONSTANT);

setFirstKToConstant (A1, 0x0000);

setFirstKToConstant (B1, 0x0000);

setFirstKToConstant (B1, 0x0000);
}
[ sk skskok sk skok sk ko ok ok sk sk ok ok ok ok ook o ok sk ok sk sk ok sk sk ke kol ok sk sk sk s skokok sk ok sk stk ok sk seskok ko sk kok /
/* Function : setCamera() */
/* Purpose : set input path to Camera for frames AO,A1,B1 */
/% Author : Khaled Morsy */
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/******************************************************************/
void setCamera(void)

{
setInputPath(A1l, CAMERA);
setInputPath(B1, CAMERA);
setInputPath(AO0, CAMERA);
}

/******************************************************************/

/* Function : startGrab() */
- /* Purpose : start grabbing an image to frames A0,A1,B1 */
/* Author : Khaled Morsy March 97 */

[ FFFKKKKAKAAFFAAAAAAAFAF KA AR RS AR K KooK ke sk ok ok ok ok ko
void startGrab(void)

{

setFrameAcquire(AO, GRAB);

setFrameAcquire(Al, GRAB);

setFrameAcquire(B1, GRAB);
}
[ KR A A AAAA KA A A KA A A Aok ko sk ok ok ok kKRR Kok Rk Rk ok ok ok sk ok ok koK ok
/* Function : stopGrab() : */
/* Purpose : stop grabbing an image to frames A0,Al1,Bi */
/* Author : Khaled Morsy March 97 */

[ FFKFFFAFAAAAFAAA KRR Aok ok e ks ke koo kb ok ok KR Kok Rk ok ok ok kok ok ok ok
void stopGrab(void)
{
setFrameAcquire (A0, FREEZE);
setFrameAcquire(Al, FREEZE);
setFrameAcquire(B1, FREEZE);
}

/******************************************************************/

/* Function : snap() */
/* Purpose : snap an image to frames A0,A1,B1 */
/* Author : Khaled Morsy March 97 (from J. Kisor) */

[ R¥FA AR AR koo ok sk ook o ook sk sk ok ok o ko ok sk bk ok sk sk ok koK ok ook ook ok /
void snap(void)

{
setFrameAcquire (A0, SNAP);
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setFrameAcquire(Al, SNAP);
setFrameAcquire(Bi, SNAP);

}

[k koK sk Kok Kok ok ok ok ok ok skt sk ok ke ko skok sk sk koK skok sk ok ok sk ok kosk ok /
/* Function : clearFrames() x/
/* Purpose : clear pixel data in A0,A1,B1 x/
/* Author : Khaled Morsy March 97 (from J. Kisor) */

/K FFFF A A A A A AR R KoKk ok oKk R Rk ok ok ok ok ook ok /
void clearFrames(void)

{
setInputPath(A1l, CONSTANT);
setInputPath(B1, CONSTANT);
setInputPath(AO0, CONSTANT);
¥

[k sk ok oKk ok ok sk ok Kk sk sk ok sk ok ok ks ok sk ook koK ok oK sk koK sk Kok ok sk ok koo sk ek ok /
/* Function : interlacePage2(void)
/* Purpose : Copies the page 2 part of an interlaced image

between the lines of page one of the interlaced image to make

a truly interlaced picture

Author : John Kisor

Comments : Khaled Morsy March 97
sk ke ok ok sk sk ki ok sk ok sk ok okok o ok sk ok ok stk o skok s skok o skok skl ok ok skt sk s ek sk ok o sk ok ok ok ok ok ok sk ok

void interlacePage2(void)

{

int i, j;

unsigned long pagellndex = 0xfa000000; /* First empty line for pg2 pixels */
unsigned long page2Index = 0xfa07a400; /* First 1K of pixels on page 2%/
unsigned long pagelDestination = 0xfa000800;

unsigned long page2Source = 0xfa07a400;

selectPage(B1);

for (i=0; i<236; i++) {
for (j=0; j<366; j++) { /*732 bytes but 2 bytes per access */
*(WORD*) pagelDestination = *(WORD*)page2Source;
pagelDestination += 2;
page2Source += 2;
b
pagellndex += 0x800;
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page2Index += 0x800;
pagelDestination = pagellndex;
page2Source = page2Index;

/***************************************************************

Function : readImage
Author : Khaled Morsy
ok stk kok ok s ok sk okokokok ok ok ok koK sk Kok K Kok ok ko skok sk skok sk KoK oK KKK Rk ok ok ok ok /

void readImage(void)
{
setCamera();
startGrab();
acqEnable();

¥
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APPENDIX B. WORLD MODEL

/* FILE: deck2.h
By : Khaled Morsy
Notes: 2D description + height of the 2nd floor points.
Changes: Major change from the 3D model of 5th floor by J. Stein.

Only, z-value added to a vertx. All other
functions are deleted.
sk sk ke e sk ok sk sk ok e ok ke sk ke sk ok sk ok ok sksk sk sk ok sk sk sk sk sk sk sk sk ok sk ok ok ok sk ok ok sk ok e e ok sk sksk sk ok ok sk sk sk sk ok sk skok sk ok f
WORLD *make_world()
{
WORLD *W;
POLYGON *P1,*Last_p;

VERTEX %P1V1, *P1V2, *P1V3, *P1V4, *P1V5, *P1V6, *P1V7,
*P1V8,*P1V9,*P1V10, *P1V11, *P1V12, *P1V13, %P1Vi4,
*P1V15,%P1V16,%P1V17, *P1V18, *P1V19, *P1V20, *P1V21,
*P1V22,%P1V23,%P1V24, *P1V25, *P1V26, *P1V27, *P1V28,
*P1V20 ,%P1V30,%P1V31, *P1V32, *P1V33, *P1V34, *P1V35,
*P1V36 ,*P1V37,%P1V38, *P1V39, *P1V40, *P1V41, *P1V42,
*P1VA3,%P1V44 ,%P1V45, *P1V46, *P1VAT, *P1V48, *P1V49,
*P1V50,*P1V51,%P1V52, *P1V53, %P1V54, *P1V55, *P1V56,
*P1V57 ,%P1VS8,*P1V59, *P1V60, *P1V61, *P1V62, *P1V63,
*P1V64 ,*P1V65,*P1V66, *P1V67, *P1V6S, *P1V69, *P1V70,
*P1V71,%P1V72,%P1V73, *P1V74, *P1V75, *P1V76, *P1V77,
*P1V78,%P1V79, *P1V80, *P1V81, *P1V82,*P1V83, *P1V84,
*P1V85,%P1V86, *P1V87, *P1V88, *P1V89, *P1V90,
*P1V91,%P1V92,%P1V93, *P1V94, *P1V95, *P1V96, *P1V97,
*P1VO8,*P1V99, *P1V100, *P1V101, *P1V102, *P1V103,
*P1V104 ,*P1V105,*P1V106, *P1V107, *P1V108, *P1V109,%P1V110,
¥P1V111,%P1V112,*P1V113, *P1V114, *P1V115, *P1V116,
*P1V117 ,%P1V118,*P1V119,*P1V120, *P1V121, *P1iV122,*P1V123,
*P1V124 ,%P1V125, . -
*P1V126,%P1V127,*P1V128, *P1V129, *P1V130, *P1V131,
*P1V132,%P1V133,*P1V134, *P1V135, *P1V136, *P1V137,
*P1V138;

W=add_world("2nd_floor",9);
H1=add_ph("front_hall",10,W,1,0);
Pi=add_pg(W,1); /* CW Polygon */
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Piv1
P1Vv2

P1V3
P1vV4
P1V5
P1ve

P1vV7
P1V8
P1V9
P1vio

P1Vil =
P1V12 =
P1V13 =

P1Vi4 =
P1vVis =
P1Vi6é =
P1Vi7 =
P1V1i8 =
P1V19 =
= add_vertex(P1,956.5,635.9,212.5);
P1vV21 =

P1v20

P1v22 =
P1V23 =
P1vV24 =
P1V25 =
P1v2e =
P1V27 =
P1v2g =
P1V29 =
P1V30 =

P1v31 =
= add_vertex(P1,1190.5,256.75,212.5);

P1V32

P1v33 =
P1v34 =

P1V35

= add_vertex(P1,0.0,0.0
= add_vertex(P1,0.0,248.

,257.5) ;
5,257.5);

= add_vertex(P1,164.7,248.5,212.5);
= add_vertex(P1,164.7,256.75,212.5);
= add_vertex(P1,245.7,256.75,212.5);

add_vertex(P1,245.7,248.5,212.5);

= add_vertex(P1,390.2,248.5,212.5);
= add_vertex(P1,390.2,256.75,212.5);
= add_vertex(P1,491.2,256.75,212.5);

add_vertex(P1,491.2,248.5,212.5);

add_vertex(P1,657.8,258.5,283.5);
add_vertex(P1,657.8,845.5,283.5);
add_vertex(P1,893.5,845.5,283.5);

add_vertex(P1,893.5,771.9,212.5);
add_vertex(P1,956.5,771.9,212.5);
add_VerteX(P1,956.5,818.9,212.5);
add_vertex(Pl,1096.68,818.9,212.5)}
add_vertex(P1,1096.68,588.9,212.5) ;
add_vertex(P1,956.5,588.9,212.5);

add_vertex(P1,893.5,635.9,212.5);

add_vertex(P1,893.5,477.4,212.5);

add_verteX(P1,956.5,477.4,212.5);
add_vertex(P1,956.5,524.7,212.5);
add_vertex(P1,1096.68,524.7,212.5) ;

/* beside graphics lab */

/*rm 2534 */

/* EXIT DOOR */

/* elev 1 */

/* elev 2 */

add_vertex(P1,1096.68,294.7,212.5);

add_vertex(P1,956.5,294.7,212.5);
add_vertex(P1,956.5,341.7,212.5);
add_vertex(P1,893.5,341.7,212.5);
add_vertex(P1,893.5,248.5,212.5);
add_vertex(P1,1190.5,248.5,212.5);

add_vertex(P1,1281.5,256.75,212.5) ;
add_vertex(P1,1281.5,248.5,212.5);

add_vertex(P1,1592.5,248.5,212.5);
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P1V36 =
P1v37 =

P1v38

P1V39 =
P1v40 =
P1v4l =
P1v42 =

P1V43 =
piv44 =
P1V45 =
P1v4e =

P1v47

P1v4sg =
P1v49 =
P1V50 =

P1V51

P1vVh2 =
P1Vh3 =
P1vb4 =
P1V55 =

P1vb6 =
P1V57 =
P1vs8 =
P1vb9 =

P1Vé0

P1vVél =
P1V62 =
P1Ve3 =
P1Ve4 =

P1V6s =
P1véee =
P1Ve7 =
P1Ves =

add_vertex(P1,1592.
add_vertex(P1,1683.
add_vertex(P1,1683.

add_vertex(P1,2159.

add_vertex(P1,2159

add_vertex(P1,2250.
add_vertex(P1,2250.

add_vertex(P1,2587.
add_vertex(P1,2587.
add_vertex(P1,2678.
add_vertex(P1,2678.

add_vertex(P1,3692.
add_vertex(P1,3692.
add_vertex(P1,3683.
add_vertex(P1,3683.
add_vertex(P1,3692.

add_vertex(P1,3692.

add_vertex(P1,3711
add_vertex(P1,3711
add_vertex(P1,3962

add_vertex(P1,3962
add_vertex(P1,3970
add_vertex(P1,3970
add_vertex(P1,3962
add_vertex(P1,3962

add_vertex(P1,5269

add_vertex(P1,5269.

add_vertex(P1,5360
add_vertex(P1,5360

add_vertex(P1,5680

add_vertex(P1,5680.
add_vertex(P1,5819.

add_vertex(P1,5819

5,256.75,212.5) ;
9,256.75,212.5) ;
9,248.5,212.5);

3,248.5,212.5) ;
.3,256.75,212.5);
3,256.75,212.5);
3, 248.5,212.5);

3,248.5,212.5);
3,256.75,212.5);
3,256.75,212.5);
3,248.5,212.5);

0, 248.5,212.5);

0,457.0,212.5);
75,457.0,212.5);
75,548.0,212.5);
0,548.0,212.5);

0,212.5);

.6,727.3,283.5);
.6,809.7,283.5);
.2,809.7,283.5);

.2,212.5);
.45,358.9,212.5);
.45,267.9,212.5);
.2,267.9,212.5);

.2,248.5);

.7,248.5,212.5);
7,256.75,212.5);
.7,256.75,212.5);
.7,248.5,212.5);

.7,248.5,212.5);
7,375.0,212.5);
2,375.0,212.5);
.2,248.5,212.5);
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/* room 243 */

/* corner */

/* room 241 */

/* corners */

/* room 239 %/

/* corner */

/% 235 %/

/* front of 231 */




P1V69
P1V70

n

P1VT71
P1V72 =
P1V73 =
P1V74

P1V75
P1V76
P1VT77
P1V78

P1V79
P1V80
P1v8l =
P1V82

P1V83
P1vV84
P1V85

add_vertex(P1,6239
add_vertex(P1,6239

add_vertex(P1,5932.

add_vertex(P1,5932
add_vertex(P1,5841
add_vertex(P1,5841

add_vertex(P1,5364.
add_vertex(P1,5364.
add_vertex(P1,5273.
add_vertex(P1,5273.

add_vertex(P1,4976.

add_vertex(P1,4976

add_vertex(P1,4884.
add_vertex(P1,4884.

add_vertex(P1,4796
add_vertex(P1,4796
add_vertex(P1,4715

.2,248.5,257.5);
.2,0.0,257.5);

7,0.0,212.5);
.7,-8.25,212.5);
.7,-8.25,212.5);
.7,0.0,212.5);

2,0.0,212.5);
2,-8.25,212.5);
2,-8.25,212.5);
2,0.0,212.5);

0,0.0,212.5);
.0,-8.25,212.5);
2,-8.25,212.5);
2,0.0,212.5);

.2,0.0,212.5);

.2,-8.25,212.5);

.7,-8.25,212.5);

P1V86= add_vertex(P1,4715.7 ,0.0,212.5);

P1V87
P1V88 =
P1V89 =
P1Vo0

P1Vvo1l
P1vo2 =
P1V93 =
P1Vo4

P1V9s
P1V96
P1vVa7
P1V9os

P1Vog
P1V100
P1V101

add_vertex(P1,4534

add_vertex(P1,4534.

add_vertex(P1,4447
add_vertex(P1,4447

add_vertex(P1,4367

add_vertex(P1,4367.

add_vertex(P1,4287
add_vertex(P1,4287

add_vertex(P1,4228
add_vertex(P1,4228
add_vertex(P1,4046
add_vertex(P1,4046

.0, 0.0,212.5);
0, -48.0,212.5);
.9, -48.0,212.5);
.9, 0.0,212.5);

.9, 0.0,212.5);
9, -8.25,212.5);
.4 ,-8.25,212.5);
.4, 0.¢,212.5);

.4, 0.0,212.5);
.4, -8.25,212.5);
.4, -8.25,212.5);
.4, 0.0,212.5);

add_vertex(P1,3999.8, 0.0,212.5);

add_vertex(P1,3999.8, -8.25,212.5);
add_vertex(P1,3919.3, -8.25,212.5);
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/* Tm 228 */

/* rm 226 *x/

/* rm 230 */

/* 232 x/

/* around water cooler */

/* 234 x/

/* EXIT Bx/

/* 236 %/



P1V102 = add_vertex(P1,3919.3, 0.0,212.5);

P1V103 = add_vertex(P1,3351.3, 0.0,212.5); /* rm 238 %/
P1V104 = add_vertex(P1,3351.3, -18.25,212.5);

P1V105 = add_vertex(P1,3260.3, -18.25,212.5);

P1V106 = add_vertex(P1,3260.3, 0.0 ,212.5);

P1V107 = add_vertex(P1,3018.8, 0.0,212.5); /* 240 maze room*/
P1V108 = add_vertex(P1,3018.8, -8.5,212.5);

P1V109 = add_vertex(P1,2927.0, -8.5,212.5);

P1V110 = add_vertex(P1,2927.0,0.0,212.5);

P1V111 = add_vertex(P1,2123.0,0.0,212.5); /* 242 yamabico lab */
P1V112 = add_vertex(P1,2123.0,-8.5,212.5);

P1V113 = add_vertex(P1,2032,-8.5,212.5);

P1V114 = add_vertex(P1,2032,0.0,212.5);

P1V115 = add_vertex(P1,1971.4, 0.0,212.5); /* rm 244 */
P1V116 = add_vertex(P1,1971.4, -8.25,212.5);

P1V117 = add_vertex(P1,1880.4, -8.25,212.5);

P1V118 = add_vertex(P1,1880.4, 0.0,212.5);

P1V119 = add_vertex(P1,1553.2, 0.0,212.5); /* rm 246 */
P1V120 = add_vertex(P1,1553.2, -8.25,212.5);

P1V121 = add_vertex(P1,1462.2, -8.25,212.5);

P1V122 = add_vertex(P1,1462.2, 0.0,212.5);

P1V123 = add_vertex(P1,1311.9, 0.0,212.5); /* rm 248 */
P1V124 = add_vertex(P1,1311.9,-8.25,212.5);

P1V125 = add_vertex(P1,1220.9,-8.25,212.5);

P1V126 = add_vertex(P1,1220.9,0,212.5);

P1V127 = add_vertex(P1,834.4,0.0,212.5); /* rm 250 */
P1V128 = add_vertex(P1,834.4,-8.25,212.5);

P1V1i29 = add_vertex(P1,743.4,-8.25,212.5);

P1V130 = add_vertex(P1,743.4,0.0,212.5);

P1V131 = add_vertex(P1,417.1,0.0,212.5); /* ™m 252 x/
Pi1V132 = add_vertex(P1,417.1,-8.25,212.5);

P1V133 = add_vertex(P1,326.1,-8.25,212.5);

P1V134 = add_vertex(P1,326.1,0.0,212.5);
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]

P1V135 = add_vertex(P1,265.9,0.0,212.5); /* Tm 254 %/
P1V136 = add_vertex(P1,265.9,-8.25,212.5);

P1V137 = add_vertex(P1,174.9,-8.25,212.5);

P1V138 = add_vertex(P1,174.9,0.0,212.5);

/*x% end of floor points */
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